The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of c0
Drewnowski, L. ; Emmanuele, G.
Studia Mathematica, Tome 104 (1993), p. 111-123 / Harvested from The Polish Digital Mathematics Library

Let (S, ∑, m) be any atomless finite measure space, and X any Banach space containing a copy of c0. Then the Bochner space L1(m;X) is uncomplemented in ccabv(∑,m;X), the Banach space of all m-continuous vector measures that are of bounded variation and have a relatively compact range; and ccabv(∑,m;X) is uncomplemented in cabv(∑,m;X). It is conjectured that this should generalize to all Banach spaces X without the Radon-Nikodym property.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:215963
@article{bwmeta1.element.bwnjournal-article-smv104i2p111bwm,
     author = {L. Drewnowski and G. Emmanuele},
     title = {The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c\_{0}$
            },
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {111-123},
     zbl = {0811.46038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i2p111bwm}
}
Drewnowski, L.; Emmanuele, G. The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c_{0}$
            . Studia Mathematica, Tome 104 (1993) pp. 111-123. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i2p111bwm/

[00000] [1] J. Bourgain, Dunford-Pettis operators on L1 and the Radon-Nikodym property, Israel J. Math. 37 (1980), 34-47. | Zbl 0457.46017

[00001] [2] S. D. Chatterji, Martingale convergence and the Radon-Nikodym theorem in Banach spaces, Math. Scand. 22 (1968), 21-41. | Zbl 0175.14503

[00002] [3] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, New York 1984.

[00003] [4] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.

[00004] [5] P. Domański and L. Drewnowski, Uncomplementability of the spaces of norm continuous functions in some spaces of "weakly" continuous functions, Studia Math. 97 (1991), 245-251. | Zbl 0736.46026

[00005] [6] L. Drewnowski, Un théorème sur les opérateurs de l(Γ), C. R. Acad. Sci. Paris 281 (1976), 967-969. | Zbl 0323.46014

[00006] [7] L. Drewnowski, Another note on copies of l and c0 in ca(Σ, X), and the equality ca(Σ, X) = cca(Σ, X), preprint, 1990.

[00007] [8] L. Drewnowski and G. Emmanuele, On Banach spaces with the Gelfand-Phillips property. II, Rend. Circ. Mat. Palermo (2) 38 (1989), 377-391. | Zbl 0689.46004

[00008] [9] G. Emmanuele, On complemented copies of c0 in LXp, 1 ≤ p < ∞, Proc. Amer. Math. Soc. 104 (1988), 785-786. | Zbl 0692.46016

[00009] [10] G. Emmanuele, About the position of Kw*(E*,F) inside Lw*(E*,F), Atti Sem. Mat. Fis. Univ. Modena, to appear.

[00010] [11] M. Feder, On the non-existence of a projection onto the space of compact operators, Canad. Math. Bull. 25 (1982), 78-81. | Zbl 0432.46008

[00011] [12] N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278. | Zbl 0266.47038

[00012] [13] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, New York 1977. | Zbl 0362.46013

[00013] [14] J. Mendoza, Copies of l in Lp(μ;X), Proc. Amer. Math. Soc. 109 (1990), 125-127.

[00014] [15] H. P. Rosenthal, On relatively disjoint families of measures, with some application to Banach space theory, Studia Math. 37 (1970), 13-36. | Zbl 0227.46027