Let (S, ∑, m) be any atomless finite measure space, and X any Banach space containing a copy of . Then the Bochner space is uncomplemented in ccabv(∑,m;X), the Banach space of all m-continuous vector measures that are of bounded variation and have a relatively compact range; and ccabv(∑,m;X) is uncomplemented in cabv(∑,m;X). It is conjectured that this should generalize to all Banach spaces X without the Radon-Nikodym property.
@article{bwmeta1.element.bwnjournal-article-smv104i2p111bwm, author = {L. Drewnowski and G. Emmanuele}, title = {The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c\_{0}$ }, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {111-123}, zbl = {0811.46038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i2p111bwm} }
Drewnowski, L.; Emmanuele, G. The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c_{0}$ . Studia Mathematica, Tome 104 (1993) pp. 111-123. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i2p111bwm/
[00000] [1] J. Bourgain, Dunford-Pettis operators on and the Radon-Nikodym property, Israel J. Math. 37 (1980), 34-47. | Zbl 0457.46017
[00001] [2] S. D. Chatterji, Martingale convergence and the Radon-Nikodym theorem in Banach spaces, Math. Scand. 22 (1968), 21-41. | Zbl 0175.14503
[00002] [3] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, New York 1984.
[00003] [4] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
[00004] [5] P. Domański and L. Drewnowski, Uncomplementability of the spaces of norm continuous functions in some spaces of "weakly" continuous functions, Studia Math. 97 (1991), 245-251. | Zbl 0736.46026
[00005] [6] L. Drewnowski, Un théorème sur les opérateurs de , C. R. Acad. Sci. Paris 281 (1976), 967-969. | Zbl 0323.46014
[00006] [7] L. Drewnowski, Another note on copies of and in ca(Σ, X), and the equality ca(Σ, X) = cca(Σ, X), preprint, 1990.
[00007] [8] L. Drewnowski and G. Emmanuele, On Banach spaces with the Gelfand-Phillips property. II, Rend. Circ. Mat. Palermo (2) 38 (1989), 377-391. | Zbl 0689.46004
[00008] [9] G. Emmanuele, On complemented copies of in , 1 ≤ p < ∞, Proc. Amer. Math. Soc. 104 (1988), 785-786. | Zbl 0692.46016
[00009] [10] G. Emmanuele, About the position of inside , Atti Sem. Mat. Fis. Univ. Modena, to appear.
[00010] [11] M. Feder, On the non-existence of a projection onto the space of compact operators, Canad. Math. Bull. 25 (1982), 78-81. | Zbl 0432.46008
[00011] [12] N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278. | Zbl 0266.47038
[00012] [13] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, New York 1977. | Zbl 0362.46013
[00013] [14] J. Mendoza, Copies of in , Proc. Amer. Math. Soc. 109 (1990), 125-127.
[00014] [15] H. P. Rosenthal, On relatively disjoint families of measures, with some application to Banach space theory, Studia Math. 37 (1970), 13-36. | Zbl 0227.46027