Let (A,e) and (V,K) be an order-unit space and a base-norm space in spectral duality, as in noncommutative spectral theory of Alfsen and Shultz. Let t be a norm lower semicontinuous trace on A, and let φ be a nonnegative convex function on ℝ. It is shown that the mapping a → t(φ(a)) is convex on A. Moreover, the mapping is shown to be nondecreasing if so is φ. Some other similar statements concerning traces and real-valued functions are also obtained.
@article{bwmeta1.element.bwnjournal-article-smv104i1p99bwm, author = {O. Tikhonov}, title = {Trace inequalities for spaces in spectral duality}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {99-110}, zbl = {0812.47033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i1p99bwm} }
Tikhonov, O. Trace inequalities for spaces in spectral duality. Studia Mathematica, Tome 104 (1993) pp. 99-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i1p99bwm/
[00000] [1] S. A. Ajupov, Extension of traces and type criterions for Jordan algebras of self-adjoint operators, Math. Z. 181 (1982), 253-268.
[00001] [2] E. M. Alfsen, Compact Convex Sets and Boundary Integrals, Ergeb. Math. Grenzgeb. 57, Springer, Berlin 1971. | Zbl 0209.42601
[00002] [3] E. M. Alfsen and F. W. Shultz, Non-commutative spectral theory for affine function spaces on convex sets, Mem. Amer. Math. Soc. 172 (1976). | Zbl 0337.46013
[00003] [4] M. A. Berdikulov, Traces on Jordan algebras, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 1986 (3), 11-15 (in Russian). | Zbl 0621.46055
[00004] [5] F. A. Berezin, Convex operator functions, Mat. Sb. 88 (1972), 268-276 (in Russian).
[00005] [6] L. G. Brown and H. Kosaki, Jensen's inequality in semi-finite von Neumann algebras, J. Operator Theory 23 (1990), 3-19. | Zbl 0718.46026
[00006] [7] T. Fack and H. Kosaki, Generalized s-numbers of τ-measurable operators, Pacific J. Math. 123 (1986), 269-300. | Zbl 0617.46063
[00007] [8] A. Lieberman, Entropy of states of a gage space, Acta Sci. Math. (Szeged) 40 (1978), 99-105. | Zbl 0359.46039
[00008] [9] D. Petz, Spectral scale of self-adjoint operators and trace inequalities, J. Math. Anal. Appl. 109 (1985), 74-82. | Zbl 0655.47032
[00009] [10] D. Petz, Jensen's inequality for positive contractions on operator algebras, Proc. Amer. Math. Soc. 99 (1987), 273-277. | Zbl 0622.46044
[00010] [11] O. E. Tikhonov, Inequalities for a trace on a von Neumann algebra, VINITI, Moscow 1982, No. 5602-82 (in Russian).
[00011] [12] O. E. Tikhonov, Convex functions and inequalities for traces, in: Konstr. Teor. Funktsiĭ i Funktsional. Anal. 6, Kazan Univ. 1987, 77-82 (in Russian). | Zbl 0719.46035
[00012] [13] O. E. Tikhonov, Inequalities for spaces in spectral duality, connected with convex functions and traces, VINITI, Moscow 1987, No. 3591-B87 (in Russian).
[00013] [14] O. E. Tikhonov, On integration theory for spaces in spectral duality, in: Proc. 1st Winter School on Measure Theory (Liptovský Ján 1988), Slovak Acad. Sci., Bratislava 1988, 157-160.
[00014] [15] H. Upmeier, Automorphism groups of Jordan C*-algebras, Math. Z. 176 (1981), 21-34. | Zbl 0438.46050