Trace inequalities for spaces in spectral duality
Tikhonov, O.
Studia Mathematica, Tome 104 (1993), p. 99-110 / Harvested from The Polish Digital Mathematics Library

Let (A,e) and (V,K) be an order-unit space and a base-norm space in spectral duality, as in noncommutative spectral theory of Alfsen and Shultz. Let t be a norm lower semicontinuous trace on A, and let φ be a nonnegative convex function on ℝ. It is shown that the mapping a → t(φ(a)) is convex on A. Moreover, the mapping is shown to be nondecreasing if so is φ. Some other similar statements concerning traces and real-valued functions are also obtained.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:215962
@article{bwmeta1.element.bwnjournal-article-smv104i1p99bwm,
     author = {O. Tikhonov},
     title = {Trace inequalities for spaces in spectral duality},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {99-110},
     zbl = {0812.47033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i1p99bwm}
}
Tikhonov, O. Trace inequalities for spaces in spectral duality. Studia Mathematica, Tome 104 (1993) pp. 99-110. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i1p99bwm/

[00000] [1] S. A. Ajupov, Extension of traces and type criterions for Jordan algebras of self-adjoint operators, Math. Z. 181 (1982), 253-268.

[00001] [2] E. M. Alfsen, Compact Convex Sets and Boundary Integrals, Ergeb. Math. Grenzgeb. 57, Springer, Berlin 1971. | Zbl 0209.42601

[00002] [3] E. M. Alfsen and F. W. Shultz, Non-commutative spectral theory for affine function spaces on convex sets, Mem. Amer. Math. Soc. 172 (1976). | Zbl 0337.46013

[00003] [4] M. A. Berdikulov, Traces on Jordan algebras, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 1986 (3), 11-15 (in Russian). | Zbl 0621.46055

[00004] [5] F. A. Berezin, Convex operator functions, Mat. Sb. 88 (1972), 268-276 (in Russian).

[00005] [6] L. G. Brown and H. Kosaki, Jensen's inequality in semi-finite von Neumann algebras, J. Operator Theory 23 (1990), 3-19. | Zbl 0718.46026

[00006] [7] T. Fack and H. Kosaki, Generalized s-numbers of τ-measurable operators, Pacific J. Math. 123 (1986), 269-300. | Zbl 0617.46063

[00007] [8] A. Lieberman, Entropy of states of a gage space, Acta Sci. Math. (Szeged) 40 (1978), 99-105. | Zbl 0359.46039

[00008] [9] D. Petz, Spectral scale of self-adjoint operators and trace inequalities, J. Math. Anal. Appl. 109 (1985), 74-82. | Zbl 0655.47032

[00009] [10] D. Petz, Jensen's inequality for positive contractions on operator algebras, Proc. Amer. Math. Soc. 99 (1987), 273-277. | Zbl 0622.46044

[00010] [11] O. E. Tikhonov, Inequalities for a trace on a von Neumann algebra, VINITI, Moscow 1982, No. 5602-82 (in Russian).

[00011] [12] O. E. Tikhonov, Convex functions and inequalities for traces, in: Konstr. Teor. Funktsiĭ i Funktsional. Anal. 6, Kazan Univ. 1987, 77-82 (in Russian). | Zbl 0719.46035

[00012] [13] O. E. Tikhonov, Inequalities for spaces in spectral duality, connected with convex functions and traces, VINITI, Moscow 1987, No. 3591-B87 (in Russian).

[00013] [14] O. E. Tikhonov, On integration theory for spaces in spectral duality, in: Proc. 1st Winter School on Measure Theory (Liptovský Ján 1988), Slovak Acad. Sci., Bratislava 1988, 157-160.

[00014] [15] H. Upmeier, Automorphism groups of Jordan C*-algebras, Math. Z. 176 (1981), 21-34. | Zbl 0438.46050