Banach spaces which are L-summands in their biduals - for example , the predual of any von Neumann algebra, or the dual of the disc algebra - have Pełczyński’s property (V*), which means that, roughly speaking, the space in question is either reflexive or is weakly sequentially complete and contains many complemented copies of .
@article{bwmeta1.element.bwnjournal-article-smv104i1p91bwm, author = {Hermann Pfitzner}, title = {L-summands in their biduals have Pe\l czy\'nski's property (V*)}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {91-98}, zbl = {0815.46020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i1p91bwm} }
Pfitzner, Hermann. L-summands in their biduals have Pełczyński's property (V*). Studia Mathematica, Tome 104 (1993) pp. 91-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i1p91bwm/
[00000] [1] J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin 1984.
[00001] [2] G. A. Edgar, An ordering for the Banach spaces, Pacific J. Math. 108 (1983), 83-98. | Zbl 0533.46007
[00002] [3] G. Godefroy, Sous-espaces bien disposés de - applications, Trans. Amer. Math. Soc. 286 (1984), 227-249. | Zbl 0521.46012
[00003] [4] G. Godefroy, Existence and uniqueness of isometric preduals: a survey, in: Bor-Luh Lin (ed.), Banach Space Theory, Proc. of the Iowa Workshop on Banach Space Theory 1987, Contemp. Math. 85, Amer. Math. Soc., 1989, 131-193.
[00004] [5] G. Godefroy et M. Talagrand, Nouvelles classes d'espaces de Banach à prédual unique, Séminaire d'Analyse Fonctionnelle de l'Ecole Polytechnique, 1980-81.
[00005] [6] P. Harmand, M-Ideale und die Einbettung eines Banachraumes in seinen Bidualraum, Dissertation, FU Berlin, 1983.
[00006] [7] P. Harmand, D. Werner, and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, monograph in preparation. | Zbl 0789.46011
[00007] [8] W. Hensgen, Contributions to the geometry of vector-valued and spaces, Habilitationsschrift, Universität Regensburg, 1992.
[00008] [9] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550. | Zbl 0132.08902
[00009] [10] D. Li, Espaces L-facteurs de leurs biduaux: bonne disposition, meilleure approximation et propriété de Radon-Nikodym, Quart. J. Math. Oxford (2) 38 (1987), 229-243. | Zbl 0631.46020
[00010] [11] D. Li, Lifting properties for some quotients of -spaces and other spaces L-summand in their bidual, Math. Z. 199 (1988), 321-329. | Zbl 0631.46021
[00011] [12] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin 1977. | Zbl 0362.46013
[00012] [13] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin 1979. | Zbl 0403.46022
[00013] [14] A. Pełczyński, On the isomorphism of the spaces m and M, Bull. Acad. Polon. Sci. 6 (1958), 695-696. | Zbl 0085.09406
[00014] [15] M. Takesaki, Theory of Operator Algebras I, Springer, Berlin 1979. | Zbl 0436.46043
[00015] [16] M. Talagrand, A new type of affine Borel functions, Math. Scand. 54 (1984), 183-188. | Zbl 0562.46005