Isometries of Musielak-Orlicz spaces II
Jamison, J. ; Kamińska, A. ; Lin, Pei-Kee
Studia Mathematica, Tome 104 (1993), p. 75-89 / Harvested from The Polish Digital Mathematics Library

A characterization of isometries of complex Musielak-Orlicz spaces LΦ is given. If LΦ is not a Hilbert space and U:LΦLΦ is a surjective isometry, then there exist a regular set isomorphism τ from (T,Σ,μ) onto itself and a measurable function w such that U(f) = w ·(f ∘ τ) for all fLΦ. Isometries of real Nakano spaces, a particular case of Musielak-Orlicz spaces, are also studied.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:215960
@article{bwmeta1.element.bwnjournal-article-smv104i1p75bwm,
     author = {J. Jamison and A. Kami\'nska and Pei-Kee Lin},
     title = {Isometries of Musielak-Orlicz spaces II},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {75-89},
     zbl = {0815.46026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i1p75bwm}
}
Jamison, J.; Kamińska, A.; Lin, Pei-Kee. Isometries of Musielak-Orlicz spaces II. Studia Mathematica, Tome 104 (1993) pp. 75-89. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i1p75bwm/

[00000] [1] S. Banach, Theory of Linear Operations, North-Holland, 1987. | Zbl 0613.46001

[00001] [2] E. Berkson and H. Porta, Hermitian operators and one-parameter groups of isometries in Hardy spaces, Trans. Amer. Math. Soc. 185 (1973), 331-344. | Zbl 0278.46024

[00002] [3] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge University Press, 1971. | Zbl 0207.44802

[00003] [4] R. Fleming and J. E. Jamison, Isometries on certain Banach spaces, J. London Math. Soc. (2) 9 (1974), 363-371. | Zbl 0288.47027

[00004] [5] R. Fleming, J. E. Jamison and A. Kamińska, Isometries of Musielak-Orlicz spaces, in: Proceedings of the Conference on Function Spaces, Edwardsville 1990, Marcel Dekker, 1992, 139-154. | Zbl 0769.46018

[00005] [6] J. E. Jamison and I. Loomis, Isometries of Orlicz spaces of vector valued functions, Math. Z. 193 (1986), 363-371.

[00006] [7] N. J. Kalton and G. V. Wood, Orthonormal systems in Banach spaces and their applications, Math. Proc. Cambridge Philos. Soc. 79 (1976), 493-510. | Zbl 0327.46022

[00007] [8] A. Kamińska, Some convexity properties of Musielak-Orlicz spaces of Bochner type, Rend. Circ. Mat. Palermo (2) Suppl. 10 (1985), 63-73. | Zbl 0609.46015

[00008] [9] A. Kamińska, Isometries of Orlicz spaces equipped with the Orlicz norm, Rocky Mountain J. Math., to appear. | Zbl 0834.46019

[00009] [10] W. Kozlowski, Modular Function Spaces, Marcel Dekker, New York 1988. | Zbl 0661.46023

[00010] [11] M. A. Krasnosel'skiǐ and Ya. B. Rutickiǐ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen 1961.

[00011] [12] G. Lumer, On the isometries of reflexive Orlicz spaces, Ann. Inst. Fourier (Grenoble) 13 (1) (1963), 99-109. | Zbl 0189.43201

[00012] [13] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983.

[00013] [14] H. Nakano, Topology and Linear Spaces, Nihonbashi, Tokyo 1951.

[00014] [15] A. R. Sourour, The isometries of Lp(Ω,X), J. Funct. Anal. 30 (1978), 276-285. | Zbl 0396.47020

[00015] [16] M. G. Zaǐdenberg, Groups of isometries of Orlicz spaces, Soviet Math. Dokl. 17 (1976), 432-436. | Zbl 0345.46028

[00016] [17] M. G. Zaǐdenberg, On isometric classification of symmetric spaces, ibid. 18 (1977), 636-640. | Zbl 0381.46016