For every element x** in the double dual of a separable Banach space X there exists the sequence of the canonical reproductions of x** in the even-order duals of X. In this paper we prove that every such sequence defines a spreading model for X. Using this result we characterize the elements of X**╲ X which belong to the class (resp. to the class ) as the elements with the sequence equivalent to the usual basis of (resp. as the elements with the sequence equivalent to the usual basis of ). Also, by analogous conditions but of isometric nature, we characterize the embeddability of (resp. ) in X.
@article{bwmeta1.element.bwnjournal-article-smv104i1p61bwm, author = {Vassiliki Farmaki}, title = {Characterizations of elements of a double dual Banach space and their canonical reproductions}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {61-74}, zbl = {0814.46014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i1p61bwm} }
Farmaki, Vassiliki. Characterizations of elements of a double dual Banach space and their canonical reproductions. Studia Mathematica, Tome 104 (1993) pp. 61-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i1p61bwm/
[00000] [1] B. Beauzamy et J. T. Lapreste, Modèles étalés des espaces de Banach, Travaux en Cours, Hermann, Paris 1984. | Zbl 0553.46012
[00001] [2] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
[00002] [3] A. Brunel and L. Sucheston, On J-convexity and ergodic superproperties of Banach spaces, Trans. Amer. Math. Soc. 204 (1975), 79-90. | Zbl 0273.46013
[00003] [4] V. Farmaki, -subspaces and fourth dual types, Proc. Amer. Math. Soc. (2) 102 (1988), 321-328. | Zbl 0643.46016
[00004] [5] R. Haydon, E. Odell and H. Rosenthal, On certain classes of Baire-1 functions with applications to Banach space theory, in: Functional Analysis (Austin, Tex., 1987/1989), Lecture Notes in Math. 1470, Springer, 1991, 1-35. | Zbl 0762.46006
[00005] [6] B. Maurey, Types and -subspaces, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1983, 123-137.
[00006] [7] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1929), 264-286. | Zbl 55.0032.04
[00007] [8] H. Rosenthal, Some remarks concerning unconditional basic sequences, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1983, 15-47.
[00008] [9] H. Rosenthal, Double dual types and the Maurey characterization of Banach spaces containing , in: Texas Functional Analysis Seminar 1983-1984, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1984, 1-37.