Characterizations of elements of a double dual Banach space and their canonical reproductions
Farmaki, Vassiliki
Studia Mathematica, Tome 104 (1993), p. 61-74 / Harvested from The Polish Digital Mathematics Library

For every element x** in the double dual of a separable Banach space X there exists the sequence (x(2n)) of the canonical reproductions of x** in the even-order duals of X. In this paper we prove that every such sequence defines a spreading model for X. Using this result we characterize the elements of X**╲ X which belong to the class B1(X)B1/2(X) (resp. to the class B1/4(X)) as the elements with the sequence (x(2n)) equivalent to the usual basis of 1 (resp. as the elements with the sequence (x(4n-2)-x(4n)) equivalent to the usual basis of c0). Also, by analogous conditions but of isometric nature, we characterize the embeddability of 1 (resp. c0) in X.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:215959
@article{bwmeta1.element.bwnjournal-article-smv104i1p61bwm,
     author = {Vassiliki Farmaki},
     title = {Characterizations of elements of a double dual Banach space and their canonical reproductions},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {61-74},
     zbl = {0814.46014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i1p61bwm}
}
Farmaki, Vassiliki. Characterizations of elements of a double dual Banach space and their canonical reproductions. Studia Mathematica, Tome 104 (1993) pp. 61-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i1p61bwm/

[00000] [1] B. Beauzamy et J. T. Lapreste, Modèles étalés des espaces de Banach, Travaux en Cours, Hermann, Paris 1984. | Zbl 0553.46012

[00001] [2] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.

[00002] [3] A. Brunel and L. Sucheston, On J-convexity and ergodic superproperties of Banach spaces, Trans. Amer. Math. Soc. 204 (1975), 79-90. | Zbl 0273.46013

[00003] [4] V. Farmaki, c0-subspaces and fourth dual types, Proc. Amer. Math. Soc. (2) 102 (1988), 321-328. | Zbl 0643.46016

[00004] [5] R. Haydon, E. Odell and H. Rosenthal, On certain classes of Baire-1 functions with applications to Banach space theory, in: Functional Analysis (Austin, Tex., 1987/1989), Lecture Notes in Math. 1470, Springer, 1991, 1-35. | Zbl 0762.46006

[00005] [6] B. Maurey, Types and 1-subspaces, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1983, 123-137.

[00006] [7] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1929), 264-286. | Zbl 55.0032.04

[00007] [8] H. Rosenthal, Some remarks concerning unconditional basic sequences, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1983, 15-47.

[00008] [9] H. Rosenthal, Double dual types and the Maurey characterization of Banach spaces containing 1, in: Texas Functional Analysis Seminar 1983-1984, Longhorn Notes, Univ. Texas Press, Austin, Tex., 1984, 1-37.