We show that a Banach space with separable dual can be renormed to satisfy hereditarily an “almost” optimal uniform smoothness condition. The optimal condition occurs when the canonical decomposition is unconditional. Motivated by this result, we define a subspace X of a Banach space Y to be an h-ideal (resp. a u-ideal) if there is an hermitian projection P (resp. a projection P with ∥I-2P∥ = 1) on Y* with kernel . We undertake a general study of h-ideals and u-ideals. For example we show that if a separable Banach space X is an h-ideal in X** then X has the complex form of Pełczyński’s property (u) with constant one and the Baire-one functions Ba(X) in X** are complemented by an hermitian projection; the converse holds under a compatibility condition which is shown to be necessary. We relate these ideas to the more familiar notion of an M-ideal, and to Banach lattices. We further investigate when, for a separable Banach space X, the ideal of compact operators K(X) is a u-ideal or an h-ideal in ℒ(X) or K(X)**. For example, we show that K(X) is an h-ideal in K(X)** if and only if X has the “unconditional compact approximation property” and X is an M-ideal in X**.
@article{bwmeta1.element.bwnjournal-article-smv104i1p13bwm, author = {G. Godefroy and N. Kalton and P. Saphar}, title = {Unconditional ideals in Banach spaces}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {13-59}, zbl = {0814.46012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i1p13bwm} }
Godefroy, G.; Kalton, N.; Saphar, P. Unconditional ideals in Banach spaces. Studia Mathematica, Tome 104 (1993) pp. 13-59. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i1p13bwm/
[00000] [1] E. M. Alfsen and E. G. Effros, Structure in real Banach spaces I, Ann. of Math. 96 (1972), 98-128. | Zbl 0248.46019
[00001] [2] T. Ando, A theorem on nonempty intersection of convex sets and its application, J. Approx. Theory 13 (1975), 158-166. | Zbl 0291.46012
[00002] [3] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
[00003] [4] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971. | Zbl 0207.44802
[00004] [5] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973. | Zbl 0262.47001
[00005] [6] R. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Lecture Notes in Math. 993, Springer, Berlin 1983. | Zbl 0512.46017
[00006] [7] R. E. Brackebush, James space on general trees, J. Funct. Anal. 79 (1988), 446-475. | Zbl 0655.46017
[00007] [8] J. C. Cabello-Piñar, J. F. Mena-Jurado, R. Payá-Albert and A. Rodríguez-Palacios, Banach spaces which are absolute subspaces in their biduals, Quart. J. Math. Oxford 42 (1991), 175-182. | Zbl 0763.46009
[00008] [9] P. G. Casazza, The commuting BAP for Banach spaces, in: Analysis at Urbana II, E. Berkson, N. T. Peck and J. J. Uhl (eds.), London Math. Soc. Lecture Note Ser. 138, Cambridge Univ. Press, 1989, 108-127.
[00009] [10] P. G. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: Geometry of Banach Spaces, P. F. X. Müller and W. Schachermayer (eds.), London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 49-63. | Zbl 0743.41027
[00010] [11] C. H. Cho and W. B. Johnson, A characterization of subspaces X of for which K(X) is an M-ideal in L(X), Proc. Amer. Math. Soc. 93 (1985), 466-470. | Zbl 0537.47010
[00011] [12] M. D. Choi and E. G. Effros, Lifting problems and the cohomology of C*-algebras, Canad. J. Math. 29 (1977), 1092-1101. | Zbl 0374.46053
[00012] [13] M. D. Choi and E. G. Effros, The completely positive lifting problem for C*-algebras, Ann. of Math. 104 (1976), 585-609. | Zbl 0361.46067
[00013] [14] W. J. Davis and W. B. Johnson, A renorming of nonreflexive Banach spaces, Proc. Amer. Math. Soc. 37 (1973), 486-488. | Zbl 0259.46014
[00014] [15] M. Fabian and G. Godefroy, The dual of every Asplund space admits a projectional resolution of the identity, Studia Math. 91 (1988), 141-151. | Zbl 0692.46012
[00015] [16] T. Figiel, W. B. Johnson and L. Tzafriri, On Banach lattices and spaces having local unconditional structure with applications to Lorentz spaces, J. Approx. Theory 13 (1975), 395-412. | Zbl 0307.46007
[00016] [17] C. Finet, Basic sequences and smooth norms in Banach spaces, Studia Math. 89 (1988), 1-9. | Zbl 0662.46016
[00017] [18] C. Finet and W. Schachermayer, Equivalent norms on separable Asplund spaces, ibid. 92 (1989), 275-283. | Zbl 0692.46013
[00018] [19] P. Flinn, On a theorem of N. J. Kalton and G. V. Wood concerning 1-complemented subspaces of spaces having an orthonormal basis, in: Texas Functional Analysis Seminar 1983-1984, Longhorn Notes, Univ. of Texas Press, Austin, Tex., 1984, 135-144.
[00019] [20] N. Ghoussoub, G. Godefroy, B. Maurey and W. Schachermayer, Some topological and geometrical structures in Banach spaces, Mem. Amer. Math. Soc. 378 (1987). | Zbl 0651.46017
[00020] [21] N. Ghoussoub and W. B. Johnson, Factoring operators through Banach lattices not containing C(0,1), Math. Z. 194 (1987), 153-171. | Zbl 0618.46025
[00021] [22] G. Godefroy, Espaces de Banach: Existence et unicité de certains préduaux, Ann. Inst. Fourier (Grenoble) 28 (3) (1978), 87-105. | Zbl 0368.46015
[00022] [23] G. Godefroy, Points de Namioka, espaces normants, applications à la théorie isométrique de la dualité, Israel J. Math. 38 (1981), 209-220. | Zbl 0453.46018
[00023] [24] G. Godefroy, Parties admissibles d'un espace de Banach. Applications, Ann. Sci. Ecole Norm. Sup. 16 (1983), 109-122. | Zbl 0544.46011
[00024] [25] G. Godefroy, Sous-espaces bien disposés de -applications, Trans. Amer. Math. Soc. 286 (1984), 227-249. | Zbl 0521.46012
[00025] [26] G. Godefroy and N. J. Kalton, The ball topology and its applications, in: Contemp. Math. 85, Amer. Math. Soc., 1989, 195-237. | Zbl 0676.46003
[00026] [27] G. Godefroy and D. Li, Banach spaces which are M-ideals in their bidual have property (u), Ann. Inst. Fourier (Grenoble) 39 (2) (1989), 361-371. | Zbl 0659.46014
[00027] [28] G. Godefroy and D. Li, Some natural families of M-ideals, Math. Scand. 66 (1990), 249-263. | Zbl 0687.46010
[00028] [29] G. Godefroy and F. Lust-Piquard, Some applications of geometry of Banach spaces to harmonic analysis, Colloq. Math. 60//61 (1990), 443-456. | Zbl 0759.46019
[00029] [30] G. Godefroy and P. Saab, Weakly unconditionally convergent series in M-ideals, Math. Scand. 64 (1989), 307-318. | Zbl 0676.46006
[00030] [31] G. Godefroy and P. D. Saphar, Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (1988), 672-695. | Zbl 0631.46015
[00031] [32] B. V. Godun, Unconditional bases and spanning basic sequences, Izv. Vyssh. Uchebn. Zaved. Mat. 24 (1980), 69-72. | Zbl 0465.46004
[00032] [33] B. V. Godun, Equivalent norms on non-reflexive Banach spaces, Soviet Math. Dokl. 265 (1982), 12-15. | Zbl 0517.46011
[00033] [34] P. Harmand, D. Werner and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, to appear. | Zbl 0789.46011
[00034] [35] P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), 253-264. | Zbl 0545.46009
[00035] [36] R. Haydon, Some more characterizations of Banach spaces containing , Math. Proc. Cambridge Philos. Soc. 80 (1976), 269-276. | Zbl 0335.46011
[00036] [37] R. Haydon and B. Maurey, On Banach spaces with strongly separable types, J. London Math. Soc. 33 (1986), 484-498. | Zbl 0626.46008
[00037] [38] S. Heinrich and P. Mankiewicz, Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, Studia Math. 73 (1982), 225-251. | Zbl 0506.46008
[00038] [39] J. Hennefeld, M-ideals, HB-subspaces, and compact operators, Indiana Univ. Math. J. 28 (1979), 927-934. | Zbl 0464.46020
[00039] [40] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550. | Zbl 0132.08902
[00040] [41] W. B. Johnson and M. Zippin, On subspaces of quotients of and , Israel J. Math. 13 (1972), 311-316.
[00041] [42] N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278. | Zbl 0266.47038
[00042] [43] N. J. Kalton, Locally complemented subspaces and -spaces for 0 < p < 1, Math. Nachr. 115 (1984), 71-97. | Zbl 0568.46013
[00043] [44] N. J. Kalton, M-ideals of compact operators, Illinois J. Math., to appear. | Zbl 0824.46029
[00044] [45] N. J. Kalton and G. V. Wood, Orthonormal systems in Banach spaces and their applications, Math. Proc. Cambridge Philos. Soc. 79 (1976), 493-510. | Zbl 0327.46022
[00045] [46] H. Knaust and E. Odell, On sequences in Banach spaces, Israel J. Math. 67 (1989), 153-169. | Zbl 0731.46007
[00046] [47] D. Li, Quantitative unconditionality of Banach spaces E for which K(E) is an M-ideal in ℒ(E), Studia Math. 96 (1990), 39-50. | Zbl 0721.46013
[00047] [48] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. 1, Sequence Spaces, Springer, Berlin 1977. | Zbl 0362.46013
[00048] [49] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. II, Function Spaces, Springer, Berlin 1979. | Zbl 0403.46022
[00049] [50] B. Maurey, Types and -subspaces, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. of Texas Press, Austin, Tex., 1983, 123-137.
[00050] [51] E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing , Israel J. Math. 20 (1975), 375-384. | Zbl 0312.46031
[00051] [52] A. Pełczyński and P. Wojtaszczyk, Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math. 40 (1971), 91-108. | Zbl 0221.46014
[00052] [53] C. J. Read, Different forms of the approximation property, to appear.
[00053] [54] H. P. Rosenthal, A characterization of and some remarks concerning the Grothendieck property, in: Texas Functional Analysis Seminar 1982-1983, Longhorn Notes, Univ. of Texas Press, Austin, Tex., 1983, 95-108.
[00054] [55] H. P. Rosenthal, On one-complemented subspaces of complex Banach spaces with a one-unconditional basis, according to Kalton and Wood, GAFA, Israel Seminar, IX, 1983-1984.
[00055] [56] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin 1974. | Zbl 0296.47023
[00056] [57] A. Sersouri, Propriété (u) dans les espaces d'opérateurs, Bull. Polish Acad. Sci. 36 (1988), 655-659. | Zbl 0622.46007
[00057] [58] B. Sims and D. Yost, Linear Hahn-Banach extension operators, Proc. Edinburgh Math. Soc. 32 (1989), 53-57. | Zbl 0648.46004
[00058] [59] A. M. Sinclair, The norm of a hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28 (1971), 446-450. | Zbl 0242.46035
[00059] [60] I. Singer, Bases in Banach Spaces, Vol. II, Springer, Berlin 1981.
[00060] [61] M. Takesaki, On the conjugate space of operator algebra, Tôhoku Math. J. 10 (1958), 194-203. | Zbl 0089.10703
[00061] [62] M. Talagrand, Dual Banach lattices and Banach lattices with the Radon-Nikodym property, Israel J. Math. 38 (1981), 46-50. | Zbl 0459.46013
[00062] [63] D. Werner, Remarks on M-ideals of compact operators, Quart. J. Math. Oxford 41 (1990), 501-508. | Zbl 0722.47036
[00063] [64] M. Zippin, Banach spaces with separable duals, Trans. Amer. Math. Soc. 310 (1988), 371-379. | Zbl 0706.46015