A formula is given for the (joint) spectral radius of an n-tuple of mutually commuting Hilbert space operators analogous to that for one operator. This gives a positive answer to a conjecture raised by J. W. Bunce in [1].
@article{bwmeta1.element.bwnjournal-article-smv103i3p329bwm, author = {Vladim\'\i r Muller and Andrzej So\l tysiak}, title = {Spectral radius formula for commuting Hilbert space operators}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {329-333}, zbl = {0812.47004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i3p329bwm} }
Muller, Vladimír; Sołtysiak, Andrzej. Spectral radius formula for commuting Hilbert space operators. Studia Mathematica, Tome 103 (1992) pp. 329-333. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i3p329bwm/
[00000] [1] J. W. Bunce, Models for n-tuples of noncommuting operators, J. Funct. Anal. 57 (1984), 21-30. | Zbl 0558.47004
[00001] [2] M. Chō and W. Żelazko, On geometric spectral radius of commuting n-tuples of operators, Hokkaido Math. J. 21 (1992), 251-258. | Zbl 0784.47004
[00002] [3] R. E. Curto, The spectra of elementary operators, Indiana Univ. Math. J. 32 (1983), 193-197. | Zbl 0488.47002
[00003] [4] R. Harte, Tensor products, multiplication operators and the spectral mapping theorem, Proc. Roy. Irish Acad. Sect. A 73 (1973), 285-302. | Zbl 0265.47034
[00004] [5] V. Müller and F.-H. Vasilescu, Standard models for some commuting multioperators, Proc. Amer. Math. Soc., to appear. | Zbl 0777.47009
[00005] [6] A. Sołtysiak, On a certain class of subspectra, Comment. Math. Univ. Carolinae 32 (1991), 715-721. | Zbl 0763.46037
[00006] [7] F.-H. Vasilescu, An operator-valued Poisson kernel, J. Funct. Anal., to appear.