On linear operators having supercyclic vectors
Herzog, Gerd
Studia Mathematica, Tome 103 (1992), p. 295-298 / Harvested from The Polish Digital Mathematics Library

We show that for a real separable Banach space X there are operators in B(X) having supercyclic vectors if and only if dim X ≤ 2 or dim X = ∞.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:215953
@article{bwmeta1.element.bwnjournal-article-smv103i3p295bwm,
     author = {Gerd Herzog},
     title = {On linear operators having supercyclic vectors},
     journal = {Studia Mathematica},
     volume = {103},
     year = {1992},
     pages = {295-298},
     zbl = {0811.47018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i3p295bwm}
}
Herzog, Gerd. On linear operators having supercyclic vectors. Studia Mathematica, Tome 103 (1992) pp. 295-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i3p295bwm/

[00000] [1] B. Beauzamy, An operator in a separable Hilbert space with many hypercyclic vectors, Studia Math. 87 (1987), 71-78. | Zbl 0647.46024

[00001] [2] B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North-Holland, 1988. | Zbl 0663.47002

[00002] [3] P. S. Bourdon and J. H. Shapiro, Cyclic composition operators in H2, in: Proc. Sympos. Pure Math. 51, Amer. Math. Soc., 1990, 43-53.

[00003] [4] K.-G. Große-Erdmann, Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Gieß en 176 (1987).

[00004] [5] D. A. Herrero and Z.-Y. Wang, Compact perturbations of hypercyclic and supercyclic operators, Indiana Univ. Math. J. 39 (1990), 819-829. | Zbl 0724.47009

[00005] [6] G. Herzog und R. Lemmert, Endomorphismen mit dichten Bahnen, preprint.

[00006] [7] G. Pólya und G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Band I, Springer, 1964. | Zbl 0122.29704

[00007] [8] S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22. | Zbl 0174.44203