Banach spaces and bilipschitz maps
Väisälä, J.
Studia Mathematica, Tome 103 (1992), p. 291-294 / Harvested from The Polish Digital Mathematics Library

We show that a normed space E is a Banach space if and only if there is no bilipschitz map of E onto E ∖ {0}.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:215952
@article{bwmeta1.element.bwnjournal-article-smv103i3p291bwm,
     author = {J. V\"ais\"al\"a},
     title = {Banach spaces and bilipschitz maps},
     journal = {Studia Mathematica},
     volume = {103},
     year = {1992},
     pages = {291-294},
     zbl = {0814.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i3p291bwm}
}
Väisälä, J. Banach spaces and bilipschitz maps. Studia Mathematica, Tome 103 (1992) pp. 291-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i3p291bwm/

[00000] [1] P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 97-114. | Zbl 0403.54005

[00001] [2] J. Väisälä, Quasimöbius maps, J. Analyse Math. 44 (1984/85), 218-234. | Zbl 0593.30022

[00002] [3] J. Väisälä, Free quasiconformality in Banach spaces I, Ann. Acad. Sci. Fenn. Ser. A I Math. 15 (1990), 355-379. | Zbl 0696.30022