The weak normal structure coefficient WCS(X) is computed or bounded when X is a finite or infinite direct sum of reflexive Banach spaces with a monotone norm.
@article{bwmeta1.element.bwnjournal-article-smv103i3p283bwm, author = {Tom\'as Dom\'\i nguez Benavides}, title = {Weak uniform normal structure in direct sum spaces}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {283-290}, zbl = {0810.46015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i3p283bwm} }
Domínguez Benavides, Tomás. Weak uniform normal structure in direct sum spaces. Studia Mathematica, Tome 103 (1992) pp. 283-290. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i3p283bwm/
[00000] [Be] B. Beauzamy, Introduction to Banach Spaces and their Geometry, North-Holland, Amsterdam 1982.
[00001] [B] W. L. Bynum, Normal structure coefficients for Banach spaces, Pacific J. Math. 86 (1980), 427-435. | Zbl 0442.46018
[00002] [C] E. Casini, Degree of convexity and product spaces, Comment. Math. Univ. Carolinae 31 (4) (1990), 637-641. | Zbl 0721.46011
[00003] [D1] T. Domí nguez Benavides, Some properties of the set and ball measures of non-compactness and applications, J. London Math. Soc. 34 (2) (1986), 120-128.
[00004] [D2] T. Domí nguez Benavides and G. Lopez Acedo, Lower bounds for normal structure coefficients, Proc. Roy. Soc. Edinburgh Sect. A, to appear.
[00005] [D3] T. Domí nguez Benavides and R. J. Rodriguez, Some geometrical constants in Orlicz sequence spaces, Nonlinear Anal., to appear.
[00006] [K] C. A. Kottmann, Subsets of the unit ball that are separated by more than one, Studia Math. 53 (1975), 15-25.
[00007] [L1] T. Landes, Permanence property of normal structure, Pacific J. Math. 111 (1) (1984), 125-143. | Zbl 0534.46015
[00008] [L2] T. Landes, Normal structure and the sum property, ibid. 123 (1) (1986), 127-147.
[00009] [Li] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin 1977. | Zbl 0362.46013
[00010] [M] E. Maluta, Uniform normal structure and related coefficients, Pacific J. Math. 111 (1984), 357-367. | Zbl 0495.46012
[00011] [Pa] J. P. Partington, On nearly uniformly convex Banach spaces, Math. Proc. Cambridge Philos. Soc. 93 (1983), 127-129. | Zbl 0507.46011
[00012] [P] S. Prus, On Bynum's fixed point theorem, Atti Sem. Mat. Fis. Univ. Modena 38 (1990), 535-545. | Zbl 0724.46020
[00013] [S] M. A. Smith, Rotundity and extremity in and , in: Contemp. Math. 52, Amer. Math. Soc., 1986, 143-162.