Let Ω be a domain in the complex plane bounded by m+1 disjoint, analytic simple closed curves and let be n+1 distinct points in Ω. We show that for each (n+1)-tuple of complex numbers, there is a unique analytic function B such that: (a) B is continuous on the closure of Ω and has constant modulus on each component of the boundary of Ω; (b) B has n or fewer zeros in Ω; and (c) , 0 ≤ j ≤ n.
@article{bwmeta1.element.bwnjournal-article-smv103i3p265bwm, author = {Stephen Fisher}, title = {Pick-Nevanlinna interpolation on finitely-connected domains}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {265-273}, zbl = {0810.30027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i3p265bwm} }
Fisher, Stephen. Pick-Nevanlinna interpolation on finitely-connected domains. Studia Mathematica, Tome 103 (1992) pp. 265-273. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i3p265bwm/
[00000] [A] L. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill, New York 1973. | Zbl 0272.30012
[00001] [CW] R. Coifman and G. Weiss, A kernel associated with certain multiply connected domains and its application to factorization theorems, Studia Math. 28 (1966), 31-68. | Zbl 0149.03202
[00002] [D] Ph. Delsarte, Y. Genin and Y. Kamp, The Pick-Nevanlinna problem, Internat. J. Circuit Theory Appl. 9 (1981), 177-187. | Zbl 0458.94048
[00003] [F] S. D. Fisher, Function Theory on Planar Domains, Wiley, New York 1983.
[00004] [FM1] S. D. Fisher and C. A. Micchelli, n-widths of sets of analytic functions, Duke Math. J. 47 (1980), 789-801.
[00005] [FM2] S. D. Fisher and C. A. Micchelli, Optimal sampling of holomorphic functions II, Math. Ann. 273 (1985), 131-147. | Zbl 0561.30008
[00006] [G] P. Garabedian, Schwarz's lemma and the Szegö kernel function, Trans. Amer. Math. Soc. 67 (1949), 1-35. | Zbl 0035.05402
[00007] [M] J. Munkres, Elements of Algebraic Topology, Addison-Wesley, Menlo Park, Calif., 1984. | Zbl 0673.55001