Maximal functions related to subelliptic operators invariant under an action of a nilpotent Lie group
Damek, Ewa
Studia Mathematica, Tome 103 (1992), p. 239-264 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:215948
@article{bwmeta1.element.bwnjournal-article-smv103i3p239bwm,
     author = {Ewa Damek},
     title = {Maximal functions related to subelliptic operators invariant under an action of a nilpotent Lie group},
     journal = {Studia Mathematica},
     volume = {103},
     year = {1992},
     pages = {239-264},
     zbl = {0811.43002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i3p239bwm}
}
Damek, Ewa. Maximal functions related to subelliptic operators invariant under an action of a nilpotent Lie group. Studia Mathematica, Tome 103 (1992) pp. 239-264. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i3p239bwm/

[00000] [B] J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1) (1969), 277-304. | Zbl 0176.09703

[00001] [D] E. Damek, Left-invariant degenerate elliptic operators on semidirect extensions of homogeneous groups, Studia Math. 89 (1988), 169-196. | Zbl 0675.22005

[00002] [DH] E. Damek and A. Hulanicki, Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group, ibid. 101 (1991), 34-68. | Zbl 0811.43001

[00003] [FKP] R. A. Fefferman, C. E. Kenig and J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. 134 (1991), 65-124. | Zbl 0770.35014

[00004] [FS] G. B. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. | Zbl 0508.42025

[00005] [GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1983. | Zbl 0562.35001

[00006] [HS] W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math. 96 (1990), 231-236. | Zbl 0723.22007

[00007] [H1] A. Hulanicki, Subalgebra of L1(G) associated with Laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. | Zbl 0316.43005

[00008] [H2] A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 828, Springer, 1980, 82-101.

[00009] [HJ] A. Hulanicki and J. Jenkins, Nilpotent groups and summability of eigenfunction expansions of Schrödinger operators, Studia Math. 80 (1984), 235-244. | Zbl 0564.43007

[00010] [Ko] J. J. Kohn, Pseudo-differential operators and non-elliptic problems, in: Pseudo-differential Operators, CIME Conference, Stresa 1968, Ed. Cremonese, Roma 1969, 157-165.

[00011] [St] E. M. Stein, Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals, Invent. Math. 74 (1983), 63-83.

[00012] [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.

[00013] [S] D. Stroock, Lectures on Stochastic Analysis: Diffusion Theory, Cambridge Univ. Press, 1987. | Zbl 0605.60057

[00014] [SV] D. Stroock and S. R. Varadhan, Multidimensional Diffusion Processes, Springer, 1979. | Zbl 0426.60069

[00015] [T] J. C. Taylor, Skew products, regular conditional probabilities and stochastic differential equations: a remark, preprint. | Zbl 0763.60031

[00016] [Z] J. Zienkiewicz, A maximal operator related to a nonsymmetric semigroup generated by a left-invariant operator on a Lie group, submitted to Studia Math.