Comparison of Orlicz-Lorentz spaces
Montgomery-Smith, S.
Studia Mathematica, Tome 103 (1992), p. 161-189 / Harvested from The Polish Digital Mathematics Library

Orlicz-Lorentz spaces provide a common generalization of Orlicz spaces and Lorentz spaces. They have been studied by many authors, including Mastyło, Maligranda, and Kamińska. In this paper, we consider the problem of comparing the Orlicz-Lorentz norms, and establish necessary and sufficient conditions for them to be equivalent. As a corollary, we give necessary and sufficient conditions for a Lorentz-Sharpley space to be equivalent to an Orlicz space, extending results of Lorentz and Raynaud. We also give an example of a rearrangement invariant space that is not an Orlicz-Lorentz space.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:215943
@article{bwmeta1.element.bwnjournal-article-smv103i2p161bwm,
     author = {S. Montgomery-Smith},
     title = {Comparison of Orlicz-Lorentz spaces},
     journal = {Studia Mathematica},
     volume = {103},
     year = {1992},
     pages = {161-189},
     zbl = {0814.46023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i2p161bwm}
}
Montgomery-Smith, S. Comparison of Orlicz-Lorentz spaces. Studia Mathematica, Tome 103 (1992) pp. 161-189. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i2p161bwm/

[00000] [B-R] C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces, Dissertationes Math. 175 (1980). | Zbl 0456.46028

[00001] [B-S] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988. | Zbl 0647.46057

[00002] [H] R. A. Hunt, On L(p,q) spaces, Enseign. Math. (2) 12 (1966), 249-275. | Zbl 0181.40301

[00003] [Ka1] A. Kamińska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr., to appear.

[00004] [Ka2] A. Kamińska, Extreme points in Orlicz-Lorentz spaces, Arch. Math. (Basel), to appear.

[00005] [Ka3] A. Kamińska, Uniform convexity of generalized Lorentz spaces, ibid., to appear.

[00006] [K-R] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, Noordhoff, 1961.

[00007] [Lo1] G. G. Lorentz, Some new function spaces, Ann. of Math. 51 (1950), 37-55.

[00008] [Lo2] G. G. Lorentz, On the theory of spaces Λ, Pacific J. Math. 1 (1951), 411-429.

[00009] [Lo3] G. G. Lorentz, Relations between function spaces, Proc. Amer. Math. Soc. 12 (1961), 127-132.

[00010] [Lu] W. A. J. Luxemburg, Banach Function Spaces, Thesis, Delft Technical Univ., 1955.

[00011] [Ma] L. Maligranda, Indices and interpolation, Dissertationes Math. 234 (1984).

[00012] [My] M. Mastyło, Interpolation of linear operators in Calderón-Lozanovskii spaces, Comment. Math. 26 (2) (1986), 247-256. | Zbl 0636.46064

[00013] [Mo1] S. J. Montgomery-Smith, The Cotype of Operators from C(K), Ph.D. thesis, Cambridge, 1988.

[00014] [Mo2] S. J. Montgomery-Smith, Boyd indices of Orlicz-Lorentz spaces, in preparation. | Zbl 0838.46024

[00015] [O] W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus B, Bull. Intern. Acad. Pol. 8 (1932), 207-220. | Zbl 0006.31503

[00016] [R] Y. Raynaud, On Lorentz-Sharpley spaces, in: Proc. of the Workshop "Interpolation Spaces and Related Topics", Haifa, June 1990, Amer. Math. Soc., to appear.

[00017] [S] R. Sharpley, Spaces Λα(X) and interpolation, J. Funct. Anal. 11 (1972), 479-513. | Zbl 0245.46043

[00018] [T] A. Torchinsky, Interpolation of operations and Orlicz classes, Studia Math. 59 (1976), 177-207. | Zbl 0348.46027