Diagonal metric subgroups of the metric centralizer of group extensions are investigated. Any diagonal compact subgroup Z of is determined by a compact subgroup Y of a given metric compact abelian group X, by a family , of group automorphisms and by a measurable function f:X → G (G a metric compact abelian group). The group Z consists of the triples , y ∈ Y, where , x ∈ X.
@article{bwmeta1.element.bwnjournal-article-smv103i2p123bwm, author = {Jan Kwiatkowski}, title = {Factors of ergodic group extensions of rotations}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {123-131}, zbl = {0809.28014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i2p123bwm} }
Kwiatkowski, Jan. Factors of ergodic group extensions of rotations. Studia Mathematica, Tome 103 (1992) pp. 123-131. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i2p123bwm/
[00000] [1] L. Baggett, On circle-valued cocycles of an ergodic measure-preserving transformation, Israel J. Math. 61 (1988), 29-38. | Zbl 0652.28004
[00001] [2] A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynamical Systems 7 (1987), 531-557. | Zbl 0646.60010
[00002] [3] M. Lemańczyk and P. Liardet, Coalescence of Anzai skew products, preprint.
[00003] [4] M. Lemańczyk and M. K. Mentzen, Compact subgroups in the centralizer of natural factors of an ergodic group extension of a rotation determine all factors, Ergodic Theory Dynamical Systems 10 (1990), 763-776. | Zbl 0725.54030
[00004] [5] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. (2) 19 (1979), 129-136. | Zbl 0425.28012
[00005] [6] W. Parry, Compact abelian group extensions of discrete dynamical systems, Z. Wahrsch. Verw. Gebiete 13 (1969), 95-113. | Zbl 0184.26901
[00006] [7] M. Rychlik, The Wiener lemma and cocycles, Proc. Amer. Math. Soc. 104 (1988), 932-933. | Zbl 0687.58018
[00007] [8] W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2, Trans. Amer. Math. Soc. 140 (1969), 1-33. | Zbl 0201.05601