We prove that for each linear contraction T : X → X (∥T∥ ≤ 1), the subspace F = {x ∈ X : Tx = x} of fixed points is 1-complemented, where X is a suitable subspace of L¹(E*) and E* is a separable dual space such that the weak and weak* topologies coincide on the unit sphere. We also prove some related fixed point results.
@article{bwmeta1.element.bwnjournal-article-smv103i1p79bwm, author = {Mourad Besbes}, title = {Points fixes et th\'eor\`emes ergodiques dans les espaces L$^1$(E)}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {79-97}, zbl = {0810.47049}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p79bwm} }
Besbes, Mourad. Points fixes et théorèmes ergodiques dans les espaces L¹(E). Studia Mathematica, Tome 103 (1992) pp. 79-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p79bwm/
[00000] [Als] D. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981), 423-424. | Zbl 0468.47036
[00001] [A-N] E. Asplund and I. Namioka, A geometric proof of Ryll-Nardzewski's fixed point theorem, Bull. Amer. Math. Soc. 73 (1967), 443-445. | Zbl 0177.40404
[00002] [Bal.1] E. J. Balder, Infinite-dimensional extension of a theorem of Komlós, Probab. Theory Related Fields 81 (1989), 185-188. | Zbl 0643.60008
[00003] [Bal.2] E. J. Balder, On uniformly bounded sequences in Orlicz spaces, Bull. Austral. Math. Soc. 41 (1990), 495-502. | Zbl 0717.46029
[00004] [Bal.3] E. J. Balder, New sequential compactness results for spaces of scalarly integrable functions, J. Math. Anal. Appl. 151 (1990), 1-16. | Zbl 0733.46015
[00005] [Beh] E. Behrends, M-Structure and the Banach-Stone Theorem, Lecture Notes in Math. 736, Springer, Berlin 1979.
[00006] [Bes.1] M. Besbes, Points fixes des contractions définies sur un convexe -fermé de L¹, C. R. Acad. Sci. Paris Sér. I 311 (1990), 243-246.
[00007] [Bes.2] M. Besbes, Complémentation de l'ensemble des points fixes d'une contraction, preprint, 1990.
[00008] [B-D-D-L] M. Besbes, S. Dilworth, P. Dowling and C. Lennard, New convexity and fixed point properties in Hardy and Lebesgue-Bochner spaces, preprint. | Zbl 0804.46044
[00009] [Bru] R. Bruck, Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251-262.
[00010] [Day] M. M. Day, Normed Linear Spaces, Springer, Berlin 1973.
[00011] [Die] J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin 1984.
[00012] [Gar] D. J. H. Garling, Subsequence principles for vector-valued random variables, Math. Proc. Cambridge Philos. Soc. 86 (1979), 301-311. | Zbl 0416.60009
[00013] [Gin] E. Giner, Espaces intégraux de type Orlicz, thèse, Université des Sciences et Techniques du Languedoc, Perpignan 1977.
[00014] [God] G. Godefroy, Sous-espaces bien disposés de L¹. Applications, Trans. Amer. Math. Soc. 286 (1984), 227-249. | Zbl 0521.46012
[00015] [Hof] L. D. Hoffmann, Pseudo-uniform convexity of H¹ in several variables, Proc. Amer. Math. Soc. 26 (1970), 609-614. | Zbl 0208.15801
[00016] [Huf] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749. | Zbl 0505.46011
[00017] [Kak] S. Kakutani, Two fixed point theorems concerning bicompact convex sets, Proc. Imperial Acad. Tokyo 14 (1938), 242-245. | Zbl 64.1101.03
[00018] [K-T] M. A. Khamsi and P. Turpin, Fixed points of nonexpansive mappings in Banach lattices, Proc. Amer. Math. Soc. 105 (1) (1989), 102-110. | Zbl 0677.47032
[00019] [Kom] J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), 217-229. | Zbl 0228.60012
[00020] [Kre.1] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin 1985.
[00021] [Kre.2] U. Krengel, On the global limit behaviour of Markov chains and of general nonsingular Markov processes, Z. Wahrsch. Verw. Gebiete 6 (1966), 302-316. | Zbl 0218.60060
[00022] [Len] C. Lennard, A new convexity property that implies a fixed point property for L₁, Studia Math. 100 (1991), 95-108. | Zbl 0762.46007
[00023] [Lim] T.-C. Lim, Asymptotic centers and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math. 90 (1980), 135-143. | Zbl 0454.47046
[00024] [Mar] A. Markov, Quelques théorèmes sur les ensembles abéliens, Dokl. Akad. Nauk SSSR (N.S.) 10 (1936), 311-313. | Zbl 0014.08201
[00025] [Maz] P. Mazet, manuscrit non publié.
[00026] [Opi] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. | Zbl 0179.19902