We investigate when a C*-algebra element generates a closed ideal, and discuss Moore-Penrose and commuting generalized inverses.
@article{bwmeta1.element.bwnjournal-article-smv103i1p71bwm, author = {Robin Harte and Mostafa Mbekhta}, title = {On generalized inverses in C*-algebras}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {71-77}, zbl = {0810.46062}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p71bwm} }
Harte, Robin; Mbekhta, Mostafa. On generalized inverses in C*-algebras. Studia Mathematica, Tome 103 (1992) pp. 71-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p71bwm/
[00000] [1] K. R. Goodearl, Notes on Real and Complex C*-Algebras, Shiva, 1982.
[00001] [2] R. E. Harte, Fredholm, Weyl and Browder theory, Proc. Royal Irish Acad. 85A (1985), 151-176.
[00002] [3] R. E. Harte, Invertibility and Singularity, Dekker, 1988.
[00003] [4] R. E. Harte and M. Ó Searcóid, Positive elements and the B* condition, Math. Z. 193 (1986), 1-9. | Zbl 0611.46061
[00004] [5] I. Kaplansky, Rings of Operators, Benjamin, 1968. | Zbl 0174.18503
[00005] [6] T. Kato, Perturbation Theory for Linear Operators, Springer, 1966. | Zbl 0148.12601
[00006] [7] Z. V. Kovarik, Similarity and interpolation between projectors, Acta Sci. Math. (Szeged) 39 (1977), 341-351. | Zbl 0392.47008