Automorphisms and derivations of a Fréchet algebra of locally integrable functions
Ghahramani, F. ; McClure, J.
Studia Mathematica, Tome 103 (1992), p. 51-69 / Harvested from The Polish Digital Mathematics Library

We find representations for the automorphisms, derivations and multipliers of the Fréchet algebra L¹loc of locally integrable functions on the half-line +. We show, among other things, that every automorphism θ of L¹loc is of the form θ=φaeλXeD, where D is a derivation, X is the operator of multiplication by coordinate, λ is a complex number, a > 0, and φa is the dilation operator (φaf)(x)=af(ax) (fL¹loc, x+). It is also shown that the automorphism group is a topological group with the topology of uniform convergence on bounded sets and is the semidirect product of a connected subgroup and a discrete group which is isomorphic to the discrete group of real numbers.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:215935
@article{bwmeta1.element.bwnjournal-article-smv103i1p51bwm,
     author = {F. Ghahramani and J. McClure},
     title = {Automorphisms and derivations of a Fr\'echet algebra of locally integrable functions},
     journal = {Studia Mathematica},
     volume = {103},
     year = {1992},
     pages = {51-69},
     zbl = {0813.46043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p51bwm}
}
Ghahramani, F.; McClure, J. Automorphisms and derivations of a Fréchet algebra of locally integrable functions. Studia Mathematica, Tome 103 (1992) pp. 51-69. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p51bwm/

[00000] [1] W. G. Bade and H. G. Dales, Norms and ideals in radical convolution algebras, J. Funct. Anal. 41 (1) (1981), 77-109. | Zbl 0463.46046

[00001] [2] H. G. Dales, Convolution algebras on the real line, in: Radical Banach Algebras and Automatic Continuity, J. M. Bachar et al. (eds.), Lecture Notes in Math. 975, Springer, Berlin 1983, 180-209.

[00002] [3] H. G. Dales, Positive Results in Automatic Continuity, forthcoming book.

[00003] [4] H. G. Diamond, Characterization of derivations on an algebra of measures, Math. Z. 100 (1967), 135-140. | Zbl 0145.38801

[00004] [5] H. G. Diamond, Characterization of derivations on an algebra of measures II, ibid. 105 (1968), 301-306. | Zbl 0167.14802

[00005] [6] W. F. Donoghue, Jr., The lattice of invariant subspaces of a completely continuous quasi-nilpotent transformation, Pacific J. Math. 7 (1957), 1031-1035. | Zbl 0078.29504

[00006] [7] I. Gelfand, D. Raikov and G. Shilov, Commutative Normed Rings, Chelsea, 1964.

[00007] [8] F. Ghahramani, Homomophisms and derivations on weighted convolution algebras, J. London Math. Soc. (2) 21 (1980), 149-161. | Zbl 0435.43005

[00008] [9] F. Ghahramani, Isomorphisms between radical weighted convolution algebras, Proc. Edinburgh Math. Soc. 26 (1983), 343-351. | Zbl 0518.43002

[00009] [10] F. Ghahramani, The connectedness of the group of automorphisms of L¹(0,1), Trans. Amer. Math. Soc. 302 (2) (1987), 647-659. | Zbl 0634.46041

[00010] [11] F. Ghahramani, The group of automorphisms of L¹(0,1) is connected, ibid. 314 (2) (1989), 851-859. | Zbl 0682.46037

[00011] [12] F. Ghahramani and J. P. McClure, Automorphisms of radical weighted convolution algebras, J. London Math. Soc. (2) 41 (1990), 122-132. | Zbl 0725.46035

[00012] [13] S. Grabiner, Derivations and automorphisms of Banach algebras of power series, Mem. Amer. Math. Soc. 146 (1974). | Zbl 0295.46074

[00013] [14] N. P. Jewell and A. M. Sinclair, Epimorphisms and derivations on L¹(0,1) are continuous, Bull. London Math. Soc. 8 (1976), 135-139. | Zbl 0324.46048

[00014] [15] H. Kamowitz and S. Scheinberg, Derivations and automorphisms of L¹(0,1), Trans. Amer. Math. Soc. 135 (1969), 415-427. | Zbl 0172.41703

[00015] [16] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952). | Zbl 0047.35502

[00016] [17] A. P. Robertson and W. J. Robertson, Topological Vector Spaces, Cambridge Univ. Press, London 1964. | Zbl 0123.30202

[00017] [18] M. P. Thomas, Approximation in the radical algebra ℓ¹(w) when wn is star-shaped, in: Radical Banach Algebras and Automatic Continuity, J. M. Bachar et al. (eds.), Lecture Notes in Math. 975, Springer, Berlin 1983, 258-272.

[00018] [19] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967. | Zbl 0171.10402