A question of Warner and Whitley concerning a nonunital version of the Gleason-Kahane-Żelazko theorem is considered in the context of nonnormed topological algebras. Among other things it is shown that a closed hyperplane M of a commutative symmetric F*-algebra E with Lindelöf Gel'fand space is a maximal regular ideal iff each element of M belongs to some closed maximal regular ideal of E.
@article{bwmeta1.element.bwnjournal-article-smv103i1p41bwm, author = {Maria Fragoulopoulou}, title = {A characterization of maximal regular ideals in lmc algebras}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {41-49}, zbl = {0812.46042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p41bwm} }
Fragoulopoulou, Maria. A characterization of maximal regular ideals in lmc algebras. Studia Mathematica, Tome 103 (1992) pp. 41-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p41bwm/
[00000] [1] R. S. Doran and J. Wichmann, Approximate Identities and Factorization in Banach Modules, Springer, Berlin 1979. | Zbl 0418.46039
[00001] [2] M. Fragoulopoulou, An Introduction to the Representation Theory of Topological *-Algebras, Schriftenreihe Math. Inst. Univ. Münster 48, 1988.
[00002] [3] M. Fragoulopoulou, Symmetric topological *-algebras, II, in: Trends in Functional Analysis and Approximation Theory, Proc. Maratea 1989, 279-288.
[00003] [4] M. Fragoulopoulou, Uniqueness of topology for semisimple LFQ-algebras, Proc. Amer. Math. Soc., to appear. | Zbl 0784.46031
[00004] [5] A. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171-172. | Zbl 0148.37502
[00005] [6] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, Springer, Berlin 1963. | Zbl 0115.10603
[00006] [7] J. Horváth, Topological Vector Spaces and Distributions, Vol. I, Addison-Wesley, Reading, Mass., 1966.
[00007] [8] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart 1981.
[00008] [9] J. P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343. | Zbl 0155.45803
[00009] [10] J. L. Kelley, General Topology, Springer, New York 1955. | Zbl 0066.16604
[00010] [11] G. Lumer, Bochner's theorem, states and the Fourier transforms of measures, Studia Math. 46 (1973), 135-140. | Zbl 0286.43008
[00011] [12] A. Mallios, Topological Algebras. Selected Topics, North-Holland, Amsterdam 1966.
[00012] [13] G. Maltese and R. Wille-Fier, A characterization of homomorphisms in certain Banach involution algebras, Studia Math. 89 (1988),133-143. | Zbl 0756.46024
[00013] [14] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952) (reprinted 1968). | Zbl 0047.35502
[00014] [15] M. Roitman and Y. Sternfeld, When is a linear functional multiplicative?, Trans. Amer. Math. Soc. 267 (1981), 111-124. | Zbl 0474.46039
[00015] [16] C. R. Warner and R. Whitley, A characterization of regular maximal ideals, Pacific J. Math. 30 (1969), 277-281. | Zbl 0176.43903
[00016] [17] W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83-85. | Zbl 0162.18504
[00017] [18] W. Żelazko, On multiplicative linear functionals, Colloq. Math. 28 (1973), 251-253. | Zbl 0238.46049