A characterization of maximal regular ideals in lmc algebras
Fragoulopoulou, Maria
Studia Mathematica, Tome 103 (1992), p. 41-49 / Harvested from The Polish Digital Mathematics Library

A question of Warner and Whitley concerning a nonunital version of the Gleason-Kahane-Żelazko theorem is considered in the context of nonnormed topological algebras. Among other things it is shown that a closed hyperplane M of a commutative symmetric F*-algebra E with Lindelöf Gel'fand space is a maximal regular ideal iff each element of M belongs to some closed maximal regular ideal of E.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:215934
@article{bwmeta1.element.bwnjournal-article-smv103i1p41bwm,
     author = {Maria Fragoulopoulou},
     title = {A characterization of maximal regular ideals in lmc algebras},
     journal = {Studia Mathematica},
     volume = {103},
     year = {1992},
     pages = {41-49},
     zbl = {0812.46042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p41bwm}
}
Fragoulopoulou, Maria. A characterization of maximal regular ideals in lmc algebras. Studia Mathematica, Tome 103 (1992) pp. 41-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p41bwm/

[00000] [1] R. S. Doran and J. Wichmann, Approximate Identities and Factorization in Banach Modules, Springer, Berlin 1979. | Zbl 0418.46039

[00001] [2] M. Fragoulopoulou, An Introduction to the Representation Theory of Topological *-Algebras, Schriftenreihe Math. Inst. Univ. Münster 48, 1988.

[00002] [3] M. Fragoulopoulou, Symmetric topological *-algebras, II, in: Trends in Functional Analysis and Approximation Theory, Proc. Maratea 1989, 279-288.

[00003] [4] M. Fragoulopoulou, Uniqueness of topology for semisimple LFQ-algebras, Proc. Amer. Math. Soc., to appear. | Zbl 0784.46031

[00004] [5] A. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171-172. | Zbl 0148.37502

[00005] [6] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, Springer, Berlin 1963. | Zbl 0115.10603

[00006] [7] J. Horváth, Topological Vector Spaces and Distributions, Vol. I, Addison-Wesley, Reading, Mass., 1966.

[00007] [8] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart 1981.

[00008] [9] J. P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343. | Zbl 0155.45803

[00009] [10] J. L. Kelley, General Topology, Springer, New York 1955. | Zbl 0066.16604

[00010] [11] G. Lumer, Bochner's theorem, states and the Fourier transforms of measures, Studia Math. 46 (1973), 135-140. | Zbl 0286.43008

[00011] [12] A. Mallios, Topological Algebras. Selected Topics, North-Holland, Amsterdam 1966.

[00012] [13] G. Maltese and R. Wille-Fier, A characterization of homomorphisms in certain Banach involution algebras, Studia Math. 89 (1988),133-143. | Zbl 0756.46024

[00013] [14] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952) (reprinted 1968). | Zbl 0047.35502

[00014] [15] M. Roitman and Y. Sternfeld, When is a linear functional multiplicative?, Trans. Amer. Math. Soc. 267 (1981), 111-124. | Zbl 0474.46039

[00015] [16] C. R. Warner and R. Whitley, A characterization of regular maximal ideals, Pacific J. Math. 30 (1969), 277-281. | Zbl 0176.43903

[00016] [17] W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83-85. | Zbl 0162.18504

[00017] [18] W. Żelazko, On multiplicative linear functionals, Colloq. Math. 28 (1973), 251-253. | Zbl 0238.46049