In this paper we prove the continuity of fractional integrals acting on nonhomogeneous function spaces defined on spaces of homogeneous type with finite measure. A definition of the molecules which are used in the theory is given. Results are proved for , , BMO, and Lipschitz spaces.
@article{bwmeta1.element.bwnjournal-article-smv103i1p25bwm, author = {A. Gatto and Stephen V\'agi}, title = {On molecules and fractional integrals on spaces of homogeneous type with finite measure}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {25-39}, zbl = {0809.42004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p25bwm} }
Gatto, A.; Vági, Stephen. On molecules and fractional integrals on spaces of homogeneous type with finite measure. Studia Mathematica, Tome 103 (1992) pp. 25-39. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p25bwm/
[00000] [CW] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023
[00001] [GV] A. E. Gatto and S. Vági, Fractional integrals on spaces of homogeneous type, in: Analysis and Partial Differential Equations, Cora Sadosky (ed.), Marcel Dekker, New York 1990, 171-216.
[00002] [MS1] R. A. Macías and C. Segovia, Singular integrals on generalized Lipschitz and Hardy spaces, Studia Math. 65 (1979), 55-75. | Zbl 0479.42014
[00003] [MS2] R. A. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math. 33 (1979), 271-309. | Zbl 0431.46019
[00004] [TW] M. H. Taibleson and G. Weiss, The molecular characterization of Hardy spaces, Astérisque 77 (1980), 66-149.