On molecules and fractional integrals on spaces of homogeneous type with finite measure
Gatto, A. ; Vági, Stephen
Studia Mathematica, Tome 103 (1992), p. 25-39 / Harvested from The Polish Digital Mathematics Library

In this paper we prove the continuity of fractional integrals acting on nonhomogeneous function spaces defined on spaces of homogeneous type with finite measure. A definition of the molecules which are used in the Hp theory is given. Results are proved for Lp, Hp, BMO, and Lipschitz spaces.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:215933
@article{bwmeta1.element.bwnjournal-article-smv103i1p25bwm,
     author = {A. Gatto and Stephen V\'agi},
     title = {On molecules and fractional integrals on spaces of homogeneous type with finite measure},
     journal = {Studia Mathematica},
     volume = {103},
     year = {1992},
     pages = {25-39},
     zbl = {0809.42004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p25bwm}
}
Gatto, A.; Vági, Stephen. On molecules and fractional integrals on spaces of homogeneous type with finite measure. Studia Mathematica, Tome 103 (1992) pp. 25-39. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p25bwm/

[00000] [CW] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023

[00001] [GV] A. E. Gatto and S. Vági, Fractional integrals on spaces of homogeneous type, in: Analysis and Partial Differential Equations, Cora Sadosky (ed.), Marcel Dekker, New York 1990, 171-216.

[00002] [MS1] R. A. Macías and C. Segovia, Singular integrals on generalized Lipschitz and Hardy spaces, Studia Math. 65 (1979), 55-75. | Zbl 0479.42014

[00003] [MS2] R. A. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math. 33 (1979), 271-309. | Zbl 0431.46019

[00004] [TW] M. H. Taibleson and G. Weiss, The molecular characterization of Hardy spaces, Astérisque 77 (1980), 66-149.