Let T be a measure-preserving ergodic transformation of a measure space (X,,μ) and, for f ∈ L(X), let . In this paper we mainly investigate the question of whether (i) and whether (ii) for some a > 0. It is proved that (i) holds for every f ≥ 0. (ii) holds if f ≥ 0 and f log log (f + 3) ∈ L(X) or if μ(X) = 1 and the random variables are independent. Related inequalities are proved. Some examples and counterexamples are constructed. Several known results are obtained as corollaries.
@article{bwmeta1.element.bwnjournal-article-smv103i1p1bwm, author = {Lasha Epremidze}, title = {On the distribution function of the majorant of ergodic means}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {1-15}, zbl = {0809.28011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p1bwm} }
Epremidze, Lasha. On the distribution function of the majorant of ergodic means. Studia Mathematica, Tome 103 (1992) pp. 1-15. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p1bwm/
[00000] [1] P. Billingsley, Ergodic Theory and Information, Wiley, 1965. | Zbl 0141.16702
[00001] [2] B. Davis, On the integrability of the ergodic maximal function, Studia Math. 73 (1982), 153-167. | Zbl 0496.28017
[00002] [3] B. Davis, Stopping rules for , and the class L log L, Z. Warsch. Verw. Gebiete 17 (1971), 147-150. | Zbl 0194.50102
[00003] [4] J. L. Doob, Stochastic Processes, Wiley, 1953.
[00004] [5] L. Epremidze, On the distribution function of the majorant of ergodic means, Seminar Inst. Prikl. Mat. Tbilis. Univ. 3 (2) (1988), 89-92 (in Russian).
[00005] [6] A. M. Garsia, A simple proof of E. Hopf's maximal ergodic theorem, J. Math. Mech. 14 (1965), 381-382. | Zbl 0178.38601
[00006] [7] R. L. Jones, New proofs for the maximal ergodic theorem and the Hardy-Littlewood maximal theorem, Proc. Amer. Math. Soc. 87 (1983), 681-684. | Zbl 0551.28018
[00007] [8] B. J. McCabe and L. A. Shepp, On the supremum of , Ann. Math. Statist. 41 (1970), 2166-2168. | Zbl 0226.60067
[00008] [9] J. Neveu, The filling scheme and the Chacon-Ornstein theorem, Israel J. Math. 33 (1979), 368-377. | Zbl 0428.28011
[00009] [10] D. Ornstein, A remark on the Birkhoff ergodic theorem, Illinois J. Math. 15 (1971), 77-79. | Zbl 0212.40102
[00010] [11] K. E. Petersen, Ergodic Theory, Cambridge Univ. Press, 1983.
[00011] [12] F. Riesz, Sur la théorie ergodique, Comment. Math. Helv. 17 (1944/45), 221-239. | Zbl 0063.06500
[00012] [13] R. Sato, On the ratio maximal function for an ergodic flow, Studia Math. 80 (1984), 129-139. | Zbl 0521.28015
[00013] [14] O. Tsereteli, On the distribution function of the conjugate function of a nonnegative Borel measure, Trudy Tbilis. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 89 (1989), 60-82 (in Russian).
[00014] [15] Z. Vakhania, On the ergodic theorems of N. Wiener and D. Ornstein, Soobshch. Akad. Nauk Gruzin. SSR 88 (1977), 281-284 (in Russian).
[00015] [16] Z. Vakhania, On the integrability of the majorant of ergodic means, Trudy Vychisl. Tsentra Akad. Nauk Gruzin. SSR 29 (1990), 43-76 (in Russian).