Let A be a closed linear operator acting in a separable Hilbert space. Denote by co(A) the closed convex hull of the spectrum of A. An estimate for the norm of f(A) is obtained under the following conditions: f is a holomorphic function in a neighbourhood of co(A), and for some integer p the operator is Hilbert-Schmidt. The estimate improves one by I. Gelfand and G. Shilov.
@article{bwmeta1.element.bwnjournal-article-smv103i1p17bwm, author = {M. Gil}, title = {On an estimate for the norm of a function of a quasihermitian operator}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {17-24}, zbl = {0812.47014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p17bwm} }
Gil, M. On an estimate for the norm of a function of a quasihermitian operator. Studia Mathematica, Tome 103 (1992) pp. 17-24. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p17bwm/
[00000] [1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Nauka, Moscow 1966 (in Russian). | Zbl 0098.30702
[00001] [2] L. de Branges, Some Hilbert spaces of analytic functions, J. Math. Anal. Appl. 12 (1965), 149-186.
[00002] [3] M. S. Brodskiǐ, Triangular and Jordan Representations of Linear Operators, Nauka, Moscow 1969 (in Russian); English transl.: Transl. Math. Monographs 32, Amer. Math. Soc., Providence, R.I., 1971.
[00003] [4] N. Dunford and J. T. Schwartz, Linear Operators, II. Spectral Theory, Selfadjoint Operators in Hilbert Space, Interscience, New York 1963. | Zbl 0128.34803
[00004] [5] I. M. Gelfand and G. E. Shilov, Some Questions of the Theory of Differential Equations, Fiz.-Mat. Liter., Moscow 1958 (in Russian).
[00005] [6] M. I. Gil', On an estimate for the stability domain of differential systems, Differentsial'nye Uravneniya 19 (8) (1983), 1452-1454 (in Russian). | Zbl 0526.34039
[00006] [7] M. I. Gil', On an estimate for the norm of a function of a Hilbert-Schmidt operator, Izv. Vyssh. Uchebn. Zaved. Mat. 1979 (8) (207), 14-19 (in Russian).
[00007] [8] M. I. Gil', On an estimate for the resolvents of nonselfadjoint operators "close" to selfadjoint and to unitary ones, Mat. Zametki 33 (1980), 161-167 (in Russian).
[00008] [9] I. Ts. Gokhberg and M. G. Kreǐn, Introduction to the Theory of Linear Nonselfadjoint Operators, Nauka, Moscow 1965 (in Russian); English transl.: Transl. Math. Monographs 18, Amer. Math. Soc., Providence, R.I., 1969.
[00009] [10] I. Ts. Gokhberg and M. G. Kreǐn, Theory and Applications of Volterra Operators in Hilbert Space, Nauka, Moscow 1967 (in Russian); English transl.: Transl. Math. Monographs 24, Amer. Math. Soc., Providence, R.I., 1970.
[00010] [11] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin 1981. | Zbl 0456.35001
[00011] [12] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin 1966. | Zbl 0148.12601