The space Weak H¹ was introduced and investigated by Fefferman and Soria. In this paper we characterize it in terms of wavelets. Equivalence of four conditions is proved.
@article{bwmeta1.element.bwnjournal-article-smv103i1p109bwm, author = {Heping Liu}, title = {The wavelet characterization of the space Weak H$^1$}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {109-117}, zbl = {0808.42015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p109bwm} }
Liu, Heping. The wavelet characterization of the space Weak H¹. Studia Mathematica, Tome 103 (1992) pp. 109-117. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv103i1p109bwm/
[00000] [1] R. Coifman et Y. Meyer, Ondelettes, opérateurs et analyse non-linéaire, Hermann, 1989.
[00001] [2] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. | Zbl 0644.42026
[00002] [3] R. Fefferman and F. Soria, The space Weak H¹, Studia Math. 85 (1987), 1-16. | Zbl 0626.42013
[00003] [4] H. Liu, The weak spaces on homogeneous groups, in: Lecture Notes in Math. 1494, Springer, 1991, 113-118.
[00004] [5] E. M. Stein, M. Taibleson and G. Weiss, Weak type estimates for maximal operators on certain H¹ spaces, Rend. Circ. Mat. Palermo Suppl. 1 (1981), 81-92. | Zbl 0503.42018