A Banach algebra A is said to be topologically nilpotent if tends to 0 as n → ∞. We continue the study of topologically nilpotent algebras which was started in [2]
@article{bwmeta1.element.bwnjournal-article-smv102i3p269bwm, author = {P. Dixon and V. M\"uller}, title = {A note on topologically nilpotent Banach algebras}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {269-275}, zbl = {0812.46038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv102i3p269bwm} }
Dixon, P.; Müller, V. A note on topologically nilpotent Banach algebras. Studia Mathematica, Tome 103 (1992) pp. 269-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv102i3p269bwm/
[00000] [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973. | Zbl 0271.46039
[00001] [2] P. G. Dixon, Topologically nilpotent Banach algebras and factorization, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), 329-341. | Zbl 0762.46039
[00002] [3] P. G. Dixon and G. A. Willis, Approximate identities in extensions of topologically nilpotent Banach algebras, Proc. Roy. Soc. Edinburgh Sect. A, to appear. | Zbl 0799.46060
[00003] [4] S. Grabiner, The nilpotency of Banach nil algebras, Proc. Amer. Math. Soc. 21 (1969), 510. | Zbl 0174.44602
[00004] [5] G. Higman, On a conjecture of Nagata, Proc. Cambridge Philos. Soc. 52 (1956), 1-4. | Zbl 0072.02502