We introduce various classes of representing systems in linear topological spaces and investigate their connections in spaces with different topological properties. Let us cite a typical result of the paper. If H is a weakly separated sequentially separable linear topological space then there is a representing system in H which is not absolutely representing.
@article{bwmeta1.element.bwnjournal-article-smv102i3p217bwm, author = {V. Kadets and Yu. Korobe\u\i nik}, title = {Representing and absolutely representing systems}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {217-223}, zbl = {0811.46005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv102i3p217bwm} }
Kadets, V.; Korobeĭnik, Yu. Representing and absolutely representing systems. Studia Mathematica, Tome 103 (1992) pp. 217-223. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv102i3p217bwm/
[00000] [1] E. Dubinsky, The Structure of Nuclear Fréchet Spaces, Lecture Notes in Math. 720, Springer, 1979. | Zbl 0403.46005
[00001] [2] V. M. Kadets and Yu. F. Korobeĭnik, Representing systems in linear topological spaces, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly Estestv. Nauk 1985 (2), 16-18 (in Russian).
[00002] [3] Yu. F. Korobeĭnik, On a dual problem. I. General results. Applications to Fréchet spaces, Mat. Sb. 97 (2) (1975), 193-229; English transl.: Math. USSR-Sb. 26 (2) (1975), 181-212.
[00003] [4] Yu. F. Korobeĭnik, Representing systems, Uspekhi Mat. Nauk 36 (1) (1981), 73-126; English transl.: Russian Math. Surveys 36 (1) (1981), 75-137.
[00004] [5] Yu. F. Korobeĭnik, On some problems of the theory of representing systems, in: Theory of Functions and of Approximations, Izdat. Saratov. Univ., 1986, 25-31 (in Russian).
[00005] [6] A. Pietsch, Nukleare lokalkonvexe Räume, Akademie-Verlag, Berlin 1965. | Zbl 0152.32302
[00006] [7] A. A. Talalyan, On the existence of null series with respect to some systems of functions, Mat. Zametki 5 (1) (1969), 3-12 (in Russian).