Let (X,T) be a paracompact space, Y a complete metric space, a lower semicontinuous multifunction with nonempty closed values. We prove that if is a (stronger than T) topology on X satisfying a compatibility property, then F admits a -continuous selection. If Y is separable, then there exists a sequence of -continuous selections such that for all x ∈ X. Given a Banach space E, the above result is then used to construct directionally continuous selections on arbitrary subsets of ℝ × E.
@article{bwmeta1.element.bwnjournal-article-smv102i3p209bwm, author = {Alberto Bressan and Giovanni Colombo}, title = {Selections and representations of multifunctions in paracompact spaces}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {209-216}, zbl = {0807.54020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv102i3p209bwm} }
Bressan, Alberto; Colombo, Giovanni. Selections and representations of multifunctions in paracompact spaces. Studia Mathematica, Tome 103 (1992) pp. 209-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv102i3p209bwm/
[00000] [1] J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin 1984.
[00001] [2] A. Bressan,HAMUpper and lower semicontinuous differential inclusions. A unified approach, in: Controllability and Optimal Control, H. Sussmann (ed.), M. Dekker, New York 1989, 21-32.
[00002] [5] A. Bressan and G. Colombo, Boundary value problems for lower semicontinuous differential inclusions, Funkcial. Ekvac., to appear. | Zbl 0788.34007
[00003] [6] A. Bressan and A. Cortesi, Directionally continuous selections in Banach spaces, Nonlin. Anal. 13 (1989), 987-992. | Zbl 0687.34013
[00004] [7] E. Michael, Selected selection theorems, Amer. Math. Monthly 63 (1956), 233-238. | Zbl 0070.39502
[00005] [8] E. Michael, Continuous selections. I, Ann. of Math. 63 (1956), 361-382. | Zbl 0071.15902