We prove that if 0 < p < 1 then a normalized unconditional basis of a complemented subspace of must be equivalent to a permutation of a subset of the canonical unit vector basis of . In particular, has unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously proved the same result for .
@article{bwmeta1.element.bwnjournal-article-smv102i3p193bwm, author = {C. Ler\'anoz}, title = {Uniqueness of unconditional bases of $c\_{0}(l\_{p})$, 0 < p < 1}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {193-207}, zbl = {0812.46003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv102i3p193bwm} }
Leránoz, C. Uniqueness of unconditional bases of $c_{0}(l_{p})$, 0 < p < 1. Studia Mathematica, Tome 103 (1992) pp. 193-207. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv102i3p193bwm/
[00000] [1] A. Bonami, Ensembles Λ (p) dans le dual , Ann. Inst. Fourier (Grenoble) 18 (2) (1968), 193-204.
[00001] [2] J. Bourgain, P. G. Casazza, J. Lindenstrauss and L. Tzafriri, Banach spaces with a unique unconditional basis, up to permutation, Mem. Amer. Math. Soc. 322 (1985). | Zbl 0575.46011
[00002] [3] N. J. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Cambridge Philos. Soc. 81 (1977), 253-278. | Zbl 0345.46013
[00003] [4] N. J. Kalton, Banach envelopes of non-locally convex spaces, Canad. J. Math. 38 (1986), 65-86. | Zbl 0577.46016
[00004] [5] N. J. Kalton, C. Leránoz and P. Wojtaszczyk, Uniqueness of unconditional bases in quasi-Banach spaces with applications to Hardy spaces, Israel J. Math. 72 (1990), 299-311. | Zbl 0753.46013
[00005] [6] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, London Math. Soc. Lecture Note Ser. 89, Cambridge University Press, 1985.
[00006] [7] C. Leránoz, Uniqueness of unconditional bases in quasi-Banach spaces, Ph.D. thesis, University of Missouri-Columbia, 1990.
[00007] [8] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in -spaces and their applications, Studia Math. 29 (1968), 275-326. | Zbl 0183.40501
[00008] [9] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, Berlin 1979. | Zbl 0403.46022
[00009] [10] J. Lindenstrauss and M. Zippin, Banach spaces with a unique unconditional basis, J. Funct. Anal. 3 (1969), 115-125. | Zbl 0174.17201
[00010] [11] B. Maurey, Type et cotype dans les espaces munis de structures locales inconditionnelles, in: Sém. Maurey-Schwartz 1973-1974, Exposés 24-25, École Polytechnique, Paris.