Uniqueness of unconditional bases of c0(lp), 0 < p < 1
Leránoz, C.
Studia Mathematica, Tome 103 (1992), p. 193-207 / Harvested from The Polish Digital Mathematics Library

We prove that if 0 < p < 1 then a normalized unconditional basis of a complemented subspace of c0(lp) must be equivalent to a permutation of a subset of the canonical unit vector basis of c0(lp). In particular, c0(lp) has unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously proved the same result for c0(l).

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:215922
@article{bwmeta1.element.bwnjournal-article-smv102i3p193bwm,
     author = {C. Ler\'anoz},
     title = {Uniqueness of unconditional bases of $c\_{0}(l\_{p})$, 0 < p < 1},
     journal = {Studia Mathematica},
     volume = {103},
     year = {1992},
     pages = {193-207},
     zbl = {0812.46003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv102i3p193bwm}
}
Leránoz, C. Uniqueness of unconditional bases of $c_{0}(l_{p})$, 0 < p < 1. Studia Mathematica, Tome 103 (1992) pp. 193-207. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv102i3p193bwm/

[00000] [1] A. Bonami, Ensembles Λ (p) dans le dual D, Ann. Inst. Fourier (Grenoble) 18 (2) (1968), 193-204.

[00001] [2] J. Bourgain, P. G. Casazza, J. Lindenstrauss and L. Tzafriri, Banach spaces with a unique unconditional basis, up to permutation, Mem. Amer. Math. Soc. 322 (1985). | Zbl 0575.46011

[00002] [3] N. J. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Cambridge Philos. Soc. 81 (1977), 253-278. | Zbl 0345.46013

[00003] [4] N. J. Kalton, Banach envelopes of non-locally convex spaces, Canad. J. Math. 38 (1986), 65-86. | Zbl 0577.46016

[00004] [5] N. J. Kalton, C. Leránoz and P. Wojtaszczyk, Uniqueness of unconditional bases in quasi-Banach spaces with applications to Hardy spaces, Israel J. Math. 72 (1990), 299-311. | Zbl 0753.46013

[00005] [6] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, London Math. Soc. Lecture Note Ser. 89, Cambridge University Press, 1985.

[00006] [7] C. Leránoz, Uniqueness of unconditional bases in quasi-Banach spaces, Ph.D. thesis, University of Missouri-Columbia, 1990.

[00007] [8] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in p-spaces and their applications, Studia Math. 29 (1968), 275-326. | Zbl 0183.40501

[00008] [9] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, Berlin 1979. | Zbl 0403.46022

[00009] [10] J. Lindenstrauss and M. Zippin, Banach spaces with a unique unconditional basis, J. Funct. Anal. 3 (1969), 115-125. | Zbl 0174.17201

[00010] [11] B. Maurey, Type et cotype dans les espaces munis de structures locales inconditionnelles, in: Sém. Maurey-Schwartz 1973-1974, Exposés 24-25, École Polytechnique, Paris.