Approximation of continuous convex-cone-valued functions by monotone operators
Prolla, João
Studia Mathematica, Tome 103 (1992), p. 175-192 / Harvested from The Polish Digital Mathematics Library

In this paper we study the approximation of continuous functions F, defined on a compact Hausdorff space S, whose values F(t), for each t in S, are convex subsets of a normed space E. Both quantitative estimates (in the Hausdorff semimetric) and Bohman-Korovkin type approximation theorems for sequences of monotone operators are obtained.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:215921
@article{bwmeta1.element.bwnjournal-article-smv102i2p175bwm,
     author = {Jo\~ao Prolla},
     title = {Approximation of continuous convex-cone-valued functions by monotone operators},
     journal = {Studia Mathematica},
     volume = {103},
     year = {1992},
     pages = {175-192},
     zbl = {0810.41024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv102i2p175bwm}
}
Prolla, João. Approximation of continuous convex-cone-valued functions by monotone operators. Studia Mathematica, Tome 103 (1992) pp. 175-192. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv102i2p175bwm/

[00000] [1] R. DeVore, The Approximation of Continuous Functions by Positive Linear Operators, Lecture Notes in Math. 293, Springer, Berlin 1972. | Zbl 0276.41011

[00001] [2] Z. Ditzian, Inverse theorems for multidimensional Bernstein operators, Pacific J. Math. 121 (1986), 293-319. | Zbl 0581.41023

[00002] [3] M. W. Grossman, Note on a generalized Bohman-Korovkin theorem, J. Math. Anal. Appl. 45 (1974), 43-46. | Zbl 0269.41019

[00003] [4] K. Keimel and W. Roth, A Korovkin type approximation theorem for set-valued functions, Proc. Amer. Math. Soc. 104 (1988), 819-824. | Zbl 0693.47032

[00004] [5] O. Shisha and B. Mond, The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1196-1200. | Zbl 0164.07102

[00005] [6] R. A. Vitale, Approximation of convex set-valued functions, J. Approx. Theory 26 (1979), 301-316. | Zbl 0422.41016