On the multiplicity function of ergodic group extensions of rotations
Goodson, G. ; Kwiatkowski, J. ; Lemańczyk, M. ; Liardet, P.
Studia Mathematica, Tome 103 (1992), p. 157-174 / Harvested from The Polish Digital Mathematics Library

For an arbitrary set A ⊆ ℕ satisfying 1 ∈ A and lcm(m₁,m₂) ∈ A whenever m₁,m₂ ∈ A, an ergodic abelian group extension of a rotation for which the range of the multiplicity function equals A is constructed.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:215920
@article{bwmeta1.element.bwnjournal-article-smv102i2p157bwm,
     author = {G. Goodson and J. Kwiatkowski and M. Lema\'nczyk and P. Liardet},
     title = {On the multiplicity function of ergodic group extensions of rotations},
     journal = {Studia Mathematica},
     volume = {103},
     year = {1992},
     pages = {157-174},
     zbl = {0830.28009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv102i2p157bwm}
}
Goodson, G.; Kwiatkowski, J.; Lemańczyk, M.; Liardet, P. On the multiplicity function of ergodic group extensions of rotations. Studia Mathematica, Tome 103 (1992) pp. 157-174. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv102i2p157bwm/

[00000] [1] O. N. Ageev, Dynamical systems with a Lebesgue component of even multiplicity in the spectrum, Mat. Sb. 136 (178) (1988), 307-319 (in Russian).

[00001] [2] S. Ferenczi and J. Kwiatkowski, Rank and spectral multiplicity function, this volume, 201-224. | Zbl 0809.28013

[00002] [3] G. R. Goodson, On the spectral multiplicity of a class of finite rank transformations, Proc. Amer. Math. Soc. 93 (1985), 303-306. | Zbl 0551.28019

[00003] [4] G. R. Goodson and M. Lemańczyk, On the rank of a class of bijective substitutions, Studia Math. 96 (1990), 219-230. | Zbl 0711.28007

[00004] [5] A. B. Katok, Constructions in Ergodic Theory, Progr. Math., Birkhäuser, Boston, Mass., to appear. | Zbl 1030.37001

[00005] [6] M. Keane, Generalized Morse sequences, Z. Wahrsch. Verw. Gebiete 10 (1968), 335-353. | Zbl 0162.07201

[00006] [7] J. Kwiatkowski, Spectral isomorphism of Morse dynamical systems, Bull. Acad. Polon. Sci. 29 (1981), 105-114. | Zbl 0496.28019

[00007] [8] J. Kwiatkowski and A. Sikorski, Spectral properties of G-symbolic Morse shifts, Bull. Soc. Math. France 115 (1987), 19-33. | Zbl 0624.28014

[00008] [9] M. Lemańczyk, Toeplitz Z₂-extensions, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 1-43.

[00009] [10] J. C. Martin, Generalized Morse sequences on n symbols, Proc. Amer. Math. Soc. 54 (1976), 379-383.

[00010] [11] J. C. Martin, The structure of generalized Morse minimal sets on n symbols, Trans. Amer. Math. Soc. 232 (1977), 343-355. | Zbl 0375.28010

[00011] [12] J. Mathew and M. G. Nadkarni, Measure preserving transformations whose spectra have a Lebesgue component of finite multiplicity, preprint. | Zbl 0515.28010

[00012] [13] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. 19 (1979), 129-136. | Zbl 0425.28012

[00013] [14] W. Parry, Compact abelian group extensions of discrete dynamical systems, Z. Wahrsch. Verw. Gebiete 13 (1969), 95-113. | Zbl 0184.26901

[00014] [15] M. Queffélec, Contribution à l'étude spectrale de suites arithmétiques, Thèse, 1984.

[00015] [16] E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314. | Zbl 0519.28008

[00016] [17] E. A. Robinson, Transformations with highly nonhomogeneous spectrum of finite multiplicity, Israel J. Math. 56 (1986), 75-88. | Zbl 0614.28012

[00017] [18] E. A. Robinson, Spectral multiplicity for non-abelian Morse sequences, in: Lecture Notes in Math. 1342, Springer, 1988, 645-652.

[00018] [19] E. A. Robinson, Non-abelian extensions have nonsimple spectra, Compositio Math. 65 (1988), 155-170. | Zbl 0641.28011