The group SU(1,d) acts naturally on the Hilbert space , where B is the unit ball of and the weighted measure . It is proved that the irreducible decomposition of the space has finitely many discrete parts and a continuous part. Each discrete part corresponds to a zero of the generalized Harish-Chandra c-function in the lower half plane. The discrete parts are studied via invariant Cauchy-Riemann operators. The representations on the discrete parts are equivalent to actions on some holomorphic tensor fields.
@article{bwmeta1.element.bwnjournal-article-smv102i2p103bwm, author = {Genkai Zhang}, title = {A weighted Plancherel formula II. The case of the ball}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {103-120}, zbl = {0811.43003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv102i2p103bwm} }
Zhang, Genkai. A weighted Plancherel formula II. The case of the ball. Studia Mathematica, Tome 103 (1992) pp. 103-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv102i2p103bwm/
[00000] [1] P. Appell et J. Kampé de Fériet, Fonctions hypergéometriques et hypersphériques, Polynomes d'Hermite, Gauthier-Villars, Paris 1926. | Zbl 52.0361.13
[00001] [2] J. Arazy, S. Fisher and J. Peetre, Membership in the Schatten-von Neumann classes and Hankel operators on Bergman space, J. London Math. Soc., to appear.
[00002] [3] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vols. 1, 2, McGraw-Hill, New York 1953. | Zbl 0051.30303
[00003] [4] I. M. Gel'fand and M. I. Graev, The analogue of Plancherel's theorem for real unimodular groups, Dokl. Akad. Nauk SSSR 92 (1953), 461-464 (in Russian).
[00004] [5] Harish-Chandra, Plancherel formula for semi-simple Lie groups, Trans. Amer. Math. Soc. 76 (1954) 485-528.
[00005] [6] D. Hejhal, The Selberg Trace Formula for PSL(2,ℝ), Vol. 1, Lecture Notes in Math. 548; Vol. 2, Lecture Notes in Math. 1001, Springer, Berlin 1976, 1983.
[00006] [7] S. Helgason, Groups and Geometric Analysis, Academic Press, New York 1984.
[00007] [8] S. Helgason, Topics in Harmonic Analysis on Homogeneous Spaces, Progr. in Math. 13, Birkhäuser, Boston 1981. | Zbl 0467.43001
[00008] [9] J. Peetre, L. Peng and G. Zhang, A weighted Plancherel formula I. The case of the disk. Applications to Hankel operators, technical report, Stockholm.
[00009] [10] W. Rudin, Function Theory in the Unit Ball of , Springer, New York 1980. | Zbl 0495.32001
[00010] [11] N. Ya. Vilenkin, Special Functions and the Theory of Group Representations, Nauka, Moscow 1965 (in Russian).