We introduce a sequence of Hankel style operators , k = 1,2,3,..., which act on the Bergman space of the unit disk. These operators are intermediate between the classical big and small Hankel operators. We study the boundedness and Schatten-von Neumann properties of the and show, among other things, that are cut-off at 1/k. Recall that the big Hankel operator is cut-off at 1 and the small Hankel operator at 0.
@article{bwmeta1.element.bwnjournal-article-smv102i1p57bwm, author = {Lizhong Peng and Richard Rochberg and Zhijian Wu}, title = {Orthogonal polynomials and middle Hankel operators on Bergman spaces}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {57-75}, zbl = {0809.30008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv102i1p57bwm} }
Peng, Lizhong; Rochberg, Richard; Wu, Zhijian. Orthogonal polynomials and middle Hankel operators on Bergman spaces. Studia Mathematica, Tome 103 (1992) pp. 57-75. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv102i1p57bwm/
[00000] [AFP] J. Arazy, S. Fisher and J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989-1054. | Zbl 0669.47017
[00001] [A] S. Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332. | Zbl 0633.47014
[00002] [J1] S. Janson, Hankel operators between weighted Bergman spaces, Ark. Mat. 26 (1988), 205-219. | Zbl 0676.47013
[00003] [J2] S. Janson, Hankel operators on Bergman spaces with change of weight, Mittag-Leffler report, 1991.
[00004] [JR] S. Janson and R. Rochberg, Intermediate Hankel operators on the Bergman space, J. Operator Theory, to appear. | Zbl 0898.47015
[00005] [JP] Q. Jiang and L. Peng, Wavelet transform and Ha-Plitz operators, preprint, 1991.
[00006] [N] K. Nowak, Estimate for singular values of commutators on weighted Bergman spaces, Indiana Univ. Math. J., to appear. | Zbl 0777.47023
[00007] [M] M. M. Peloso, Besov spaces, mean oscillation, and generalized Hankel operators, preprint, 1991.
[00008] [P] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Durham 1976. | Zbl 0356.46038
[00009] [Pel1] V. V. Peller, Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class , Integral Equations Operator Theory 5 (1982), 244-272. | Zbl 0478.47014
[00010] [Pel2] V. V. Peller, A description of Hankel operators of class for p > 0, investigation of the rate of rational approximation, and other applications, Math. USSR-Sb. 50 (1985), 465-494. | Zbl 0561.47022
[00011] [PX] L. Peng and C. Xu, Jacobi polynomials and Toeplitz-Hankel type operators on weighted Bergman spaces, preprint, 1991.
[00012] [PZ] L. Peng and G. Zhang, Middle Hankel operators on Bergman space, preprint, 1990.
[00013] [R1] R. Rochberg, Trace ideal criteria for Hankel operators and commutators, Indiana Univ. Math. J. 31 (1982), 913-925. | Zbl 0514.47020
[00014] [R2] R. Rochberg, Decomposition theorems for Bergman spaces and their applications, in: Operators and Function Theory, Reidel, Dordrecht 1985, 225-277.
[00015] [S] S. Semmes, Trace ideal criteria for Hankel operators, and applications to Besov spaces, Integral Equations Operator Theory 7 (1984), 241-281. | Zbl 0541.47023
[00016] [Sz] G. Szegö, Orthogonal Polynomials, Colloq. Publ. 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975.
[00017] [Z] G. Zhang, Hankel operators and Plancherel formula, Ph.D thesis, Stockholm University, Stockholm 1991.