We give a Littlewood-Paley function characterization of a new Hardy space HK₂ and its φ-transform characterizations in M. Frazier & B. Jawerth's sense.
@article{bwmeta1.element.bwnjournal-article-smv101i3p285bwm, author = {Shanzhen Lu and Dachun Yang}, title = {The Littlewood-Paley function and ph-trans-form characterizations of a new Hardy space HK2 associated with the Herz space}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {285-298}, zbl = {0811.42005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv101i3p285bwm} }
Lu, Shanzhen; Yang, Dachun. The Littlewood-Paley function and φ-trans-form characterizations of a new Hardy space HK₂ associated with the Herz space. Studia Mathematica, Tome 103 (1992) pp. 285-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv101i3p285bwm/
[00000] [1] Y. Z. Chen and K. S. Lau, On some new classes of Hardy spaces, J. Funct. Anal. 84 (1989), 255-278. | Zbl 0677.30030
[00001] [2] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078
[00002] [3] M. Frazier and B. Jawerth, The φ-transform and applications to distribution spaces, in: Function Spaces and Applications, Lecture Notes in Math. 1302, Springer, 1988, 223-246. | Zbl 0648.46038
[00003] [4] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
[00004] [5] J. García-Cuerva, Hardy spaces and Beurling algebras, J. London Math. Soc. (2) 39 (1989), 499-513.
[00005] [6] C. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transform, J. Math. Mech. 18 (1968), 283-324.
[00006] [7] D. S. Kurtz, Littlewood-Paley operators on BMO, Proc. Amer. Math. Soc. 99 (1987), 657-666.
[00007] [8] S. Lu and D. Yang, Some new Hardy spaces associated with the Herz spaces, to appear. | Zbl 0782.42019
[00008] [9] A. Torchinsky, Real-variable Methods in Harmonic Analysis, Academic Press, New York 1986.
[00009] [10] D. Yang, The boundedness of generalized Littlewood-Paley functions, Chinese Ann. Math. Ser. A 12 (1991), 736-744. | Zbl 0758.42013