Weighted norm inequalities on spaces of homogeneous type
Sun, Qiyu
Studia Mathematica, Tome 103 (1992), p. 241-251 / Harvested from The Polish Digital Mathematics Library

We give a characterization of the weights (u,w) for which the Hardy-Littlewood maximal operator is bounded from the Orlicz space L_Φ(u) to L_Φ(w). We give a characterization of the weight functions w (respectively u) for which there exists a nontrivial u (respectively w > 0 almost everywhere) such that the Hardy-Littlewood maximal operator is bounded from the Orlicz space L_Φ(u) to L_Φ(w).

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:215903
@article{bwmeta1.element.bwnjournal-article-smv101i3p241bwm,
     author = {Qiyu Sun},
     title = {Weighted norm inequalities on spaces of homogeneous type},
     journal = {Studia Mathematica},
     volume = {103},
     year = {1992},
     pages = {241-251},
     zbl = {0812.46018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv101i3p241bwm}
}
Sun, Qiyu. Weighted norm inequalities on spaces of homogeneous type. Studia Mathematica, Tome 103 (1992) pp. 241-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv101i3p241bwm/

[00000] [1] H. Aimar, Singular integrals and approximate identities on spaces of homogeneous type, Trans. Amer. Math. Soc. 292 (1985), 135-153. | Zbl 0578.42016

[00001] [2] R. J. Bagby, Weak bounds for the maximal function in weighted Orlicz spaces, Studia Math. 95 (1990), 195-204. | Zbl 0718.42018

[00002] [3] L. Carleson and P. Jones, Weighted norm inequalities and a theorem of Koosis, Mittag-Leffler Rep. No. 2, 1981.

[00003] [4] R. R. Coifman et G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin 1971. | Zbl 0224.43006

[00004] [5] D. Gallardo, Weighted weak type integral inequalities for the Hardy-Littlewood maximal operator, Israel J. Math. 67 (1989), 95-108. | Zbl 0683.42021

[00005] [6] J. Garcí a-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam 1985.

[00006] [7] A. E. Gatto and C. E. Gutiérrez, On weighted norm inequalities for the maximal function, Studia Math. 76 (1983), 59-62. | Zbl 0536.42021

[00007] [8] A. E. Gatto, C. E. Gutiérrez and R. L. Wheeden, On weighted fractional integrals, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Chicago 1981, Vol. I, Wadsworth, Belmont, Calif., 1983, 124-137.

[00008] [9] R. A. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math. 71 (1982), 277-284. | Zbl 0517.42030

[00009] [10] J. Musielak, Orlicz Spaces and Modular Spaces, Springer, Berlin 1983.

[00010] [11] W. Pan, Weighted norm inequalities for fractional integrals and maximal functions on spaces of homogeneous type, Acta Sci. Natur. Univ. Pekinensis 26 (1990), 543-553. | Zbl 0729.42008

[00011] [12] J. L. Rubio de Francia, Boundedness of maximal functions and singular integrals in weighted L^p spaces, Proc. Amer. Math. Soc. 83 (1981), 673-679. | Zbl 0477.42011

[00012] [13] E. T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), 1-11. | Zbl 0508.42023

[00013] [14] W.-S. Young, Weighted norm inequalities for the Hardy-Littlewood maximal function, Proc. Amer. Math. Soc. 85 (1982), 24-26. | Zbl 0489.42019

[00014] [15] M. Zhou, Weighted norm inequalities for the maximal functions on spaces of homogeneous type, Approx. Theory Appl. 6 (2) (1990), 38-42.