It is shown that every monocompact submeasure on an orthomodular poset is order continuous. From this generalization of the classical Marczewski Theorem, several results of commutative Measure Theory are derived and unified.
@article{bwmeta1.element.bwnjournal-article-smv101i2p123bwm, author = {Paolo de Lucia and Pedro Morales}, title = {A noncommutative version of a Theorem of Marczewski for submeasures}, journal = {Studia Mathematica}, volume = {103}, year = {1992}, pages = {123-138}, zbl = {0812.28009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv101i2p123bwm} }
de Lucia, Paolo; Morales, Pedro. A noncommutative version of a Theorem of Marczewski for submeasures. Studia Mathematica, Tome 103 (1992) pp. 123-138. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv101i2p123bwm/
[00000] [1] A. D. Alexandroff [A. D. Aleksandrov], Additive set-functions in abstract spaces I, Mat. Sb. 8 (50) (1940), 307-348. | Zbl 66.0218.01
[00001] [2] A. D. Alexandroff [A. D. Aleksandrov], Additive set functions in abstract spaces II, ibid. 9 (51) (1941), 563-628.
[00002] [3] O. R. Béaver and T. A. Cook, States on quantum logics and their connection with a theorem of Alexandroff, Proc. Amer. Math. Soc. 67 (1977), 133-134. | Zbl 0371.28015
[00003] [4] L. Beran, Orthomodular Lattices-Algebraic Approach, Academia, Praha 1984.
[00004] [5] K. P. S. Bhaskara Rao and M. Bhaskara Rao, Theory of Charges, Academic Press, London 1983. | Zbl 0516.28001
[00005] [6] N. Bourbaki, Topologie générale, 3rd ed., Actualités Sci. Indust. 1143, Chaps. 3 and 4, Hermann, Paris 1960.
[00006] [7] L. Drewnowski, Topological rings of sets, continuous set functions, integration. II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 277-286. | Zbl 0249.28005
[00007] [8] N. Dunford and J. Schwartz, Linear Operators I, Interscience, New York 1958.
[00008] [9] R. Engelking, General Topology, Polish Scientific Publishers, Warszawa 1977.
[00009] [10] W. Gähler, Grundstrukturen der Analysis, Vol. I, Akademie-Verlag, Berlin 1977. | Zbl 0351.54001
[00010] [11] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer, New York 1976. | Zbl 0327.46040
[00011] [12] A. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6 (1957), 885-893. | Zbl 0078.28803
[00012] [13] I. Glicksberg, The representation of functionals by integrals, Duke Math. J. 19 (1952), 253-261. | Zbl 0048.09004
[00013] [14] J. E. Huneycutt, Jr., Extensions of abstract valued set functions, Trans. Amer. Math. Soc. 141 (1969), 505-513. | Zbl 0181.41603
[00014] [15] G. Kalmbach, Orthomodular Lattices, Academic Press, London 1983.
[00015] [16] G. Kalmbach, Measures and Hilbert Lattices, World Scientific, Singapore 1986.
[00016] [17] I. Kluvánek, Integration Structures, Proc. Centre Math. Anal. Austral. Nat. Univ. 18, 1988. | Zbl 0704.46002
[00017] [18] K. Kuratowski, Topology I, Academic Press, London 1966.
[00018] [19] E. Marczewski, On compact measures, Fund. Math. 40 (1953), 113-124. | Zbl 0052.04902
[00019] [20] H. Millington, Products of group-valued measures, Studia Math. 54 (1975), 7-27. | Zbl 0325.28010
[00020] [21] P. Morales, Regularity and extension of semigroup-valued Baire measures, in: Proc. Conf. Measure Theory, Oberwolfach 1979, Lecture Notes in Math. 794, Springer, New York 1980, 317-323.
[00021] [22] J. von Neumann, Functional Operators I, Princeton Univ. Press, Princeton, N.J., 1950. | Zbl 0039.28401
[00022] [23] J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton, N.J., 1955. | Zbl 0064.21503
[00023] [24] G. T. Rüttimann, Non-commutative measure theory, preprint, University of Berne, 1979.
[00024] [25] R. Schatten, Norm Ideals of Completely Continuous Operators, Springer, Berlin 1960.
[00025] [26] J. Šipoš, Subalgebras and sublogics of σ-logics, Math. Slovaca 28 (1) (1978), 3-9. | Zbl 0365.02015
[00026] [27] R. M. Stephenson, Pseudo-compact spaces, Trans. Amer. Math. Soc. 134 (1968), 437-448. | Zbl 0169.53903
[00027] [28] A. Sudbery, Quantum Mechanics and the Particles of Nature, Cambridge Univ. Press, Cambridge 1986. | Zbl 0622.46052
[00028] [29] K. Sundaresan and P. W. Day, Regularity of group valued Baire and Borel measures, Proc. Amer. Math. Soc. 36 (1972), 609-612. | Zbl 0263.28009
[00029] [30] F. Topsøe, Approximating pavings and construction of measures, Colloq. Math. 42 (1979), 377-385. | Zbl 0448.28001
[00030] [31] V. S. Varadarajan, Geometry of Quantum Theory, 2nd ed., Springer, Berlin 1985. | Zbl 0581.46061