A weak molecule condition for certain Triebel-Lizorkin spaces
Hofmann, Steve
Studia Mathematica, Tome 103 (1992), p. 113-122 / Harvested from The Polish Digital Mathematics Library

A weak molecule condition is given for the Triebel-Lizorkin spaces Ḟ_p^{α,q}, with 0 < α < 1 and 1 < p, q < ∞. As an easy corollary, one may deduce, by atomic-molecular methods, a Triebel-Lizorkin space "T1" Theorem of Han and Sawyer, and Han, Jawerth, Taibleson and Weiss, for Calderón-Zygmund kernels K(x,y) which are not assumed to satisfy any regularity condition in the y variable.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:215895
@article{bwmeta1.element.bwnjournal-article-smv101i2p113bwm,
     author = {Steve Hofmann},
     title = {A weak molecule condition for certain Triebel-Lizorkin spaces},
     journal = {Studia Mathematica},
     volume = {103},
     year = {1992},
     pages = {113-122},
     zbl = {0811.46025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv101i2p113bwm}
}
Hofmann, Steve. A weak molecule condition for certain Triebel-Lizorkin spaces. Studia Mathematica, Tome 103 (1992) pp. 113-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv101i2p113bwm/

[00000] [CZ] A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139. | Zbl 0047.10201

[00001] [CDMS] R. Coifman, G. David, Y. Meyer and S. Semmes, ω-Calderón-Zygmund operators, in: Proc. Conf. Harmonic Analysis and PDE, El Escorial 1987, Lecture Notes in Math. 1384, Springer, Berlin 1989, 132-145.

[00002] [DJS] G. David, J.-L. Journé and S. Semmes, Calderón-Zygmund operators, para-accretive functions and interpolation, preprint. | Zbl 0604.42014

[00003] [FHJW] M. Frazier, Y. S. Han, B. Jawerth and G. Weiss, The T1 Theorem for Triebel-Lizorkin spaces, in: Proc. Conf. Harmonic Analysis and PDE, El Escorial 1987, Lecture Notes in Math. 1384, Springer, Berlin 1989, 168-181. | Zbl 0679.46026

[00004] [FJ] M. Frazier and B. Jawerth, The φ-transform and applications to distribution spaces, in: Function Spaces and Applications, M. Cwikel et al. (eds.), Lecture Notes in Math. 1302, Springer, Berlin 1988, 223-246.

[00005] [HH] Y. S. Han and S. Hofmann, T1 Theorems for Besov and Triebel-Lizorkin spaces, Trans. Amer. Math. Soc., to appear. | Zbl 0779.42010

[00006] [HJTW] Y. S. Han, B. Jawerth, M. Taibleson and G. Weiss, Littlewood-Paley theory and ϵ-families of operators, Colloq. Math. 60/61 (1990), 321-359. | Zbl 0763.46024

[00007] [HS] Y. S. Han and E. T. Sawyer, Para-accretive functions, the weak boundedness property and the Tb Theorem, Rev. Mat. Iberoamericana 6 (1990), 17-41. | Zbl 0723.42005

[00008] [L] P. G. Lemarié, Continuité sur les espaces de Besov des opérateurs définis par des intégrales singulières, Ann. Inst. Fourier (Grenoble) 35 (4) (1985), 175-187. | Zbl 0555.47032

[00009] [M] Y. Meyer, Les nouveaux opérateurs de Calderón-Zygmund, in: Colloque en l'honneur de L. Schwartz, Astérisque 131 (1985), 237-254.

[00010] [MM] M. Meyer, Continuité Besov de certains opérateurs intégraux singuliers, thèse de 3e cycle, Orsay 1985.

[00011] [T] R. Torres, Boundedness results for operators with singular kernels on distribution spaces, Mem. Amer. Math. Soc. 442 (1991). | Zbl 0737.47041