Isomorphy classes of spaces of holomorphic functions on open polydiscs in dual power series spaces
Scheve, Manfred
Studia Mathematica, Tome 100 (1991), p. 83-104 / Harvested from The Polish Digital Mathematics Library

Let Λ_R(α) be a nuclear power series space of finite or infinite type with lim_{j→∞} (1/j) log α_j = 0. We consider open polydiscs D_a in Λ_R(α)'_b with finite radii and the spaces H(D_a) of all holomorphic functions on D_a under the compact-open topology. We characterize all isomorphy classes of the spaces {H(D_a) | a ∈ Λ_R(α), a > 0}. In the case of a nuclear power series space Λ₁(α) of finite type we give this characterization in terms of the invariants (Ω̅ ) and (Ω̃ ) known from the theory of linear operators between Fréchet spaces.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:215894
@article{bwmeta1.element.bwnjournal-article-smv101i1p83bwm,
     author = {Manfred Scheve},
     title = {Isomorphy classes of spaces of holomorphic functions on open polydiscs in dual power series spaces},
     journal = {Studia Mathematica},
     volume = {100},
     year = {1991},
     pages = {83-104},
     zbl = {0812.46027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv101i1p83bwm}
}
Scheve, Manfred. Isomorphy classes of spaces of holomorphic functions on open polydiscs in dual power series spaces. Studia Mathematica, Tome 100 (1991) pp. 83-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv101i1p83bwm/

[00000] [1] P. J. Boland and S. Dineen, Holomorphic functions on fully nuclear spaces, Bull. Soc. Math. France 106 (1978), 311-336. | Zbl 0402.46017

[00001] [2] P. A. Chalov and V. P. Zakharyuta, A quasiequivalence criterion for absolute bases in an arbitrary (F)-space, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly Estestv. Nauki 1983 (2), 22-24 (in Russian). | Zbl 0533.46003

[00002] [3] P. B. Djakov, A short proof of the theorem of Crone and Robinson on quasi-equivalence of regular bases, Studia Math. 53 (1975), 269-271. | Zbl 0317.46007

[00003] [4] H. Jarchow, Locally Convex Spaces, Teubner, 1981. | Zbl 0466.46001

[00004] [5] R. Meise and D. Vogt, Structure of spaces of holomorphic functions on infinite dimensional polydiscs, Studia Math. 75 (1983), 235-252. | Zbl 0527.46019

[00005] [6] R. Meise and D. Vogt, Analytic isomorphisms of infinite dimensional polydiscs and an application, Bull. Soc. Math. France 111 (1983), 3-20. | Zbl 0537.46044

[00006] [7] R. Meise and D. Vogt, Holomorphic functions of uniformly bounded type on nuclear Fréchet spaces, Studia Math. 83 (1986), 147-166. | Zbl 0657.46003

[00007] [8] R. Meise and D. Vogt, Holomorphic Functions on Nuclear Sequence Spaces, Departamento de Teoría de Funciones, Universidad Complutense, Madrid 1986. | Zbl 0657.46003

[00008] [9] L. Mirsky, Transversal Theory, Academic Press, 1971.

[00009] [10] B. S. Mityagin, The equivalence of bases in Hilbert scales, Studia Math. 37 (1971), 111-137 (in Russian). | Zbl 0215.19502

[00010] [11] A. Pietsch, Nuclear Locally Convex Spaces, Ergeb. Math. Grenzgeb. 66, Springer, 1972.

[00011] [12] H. H. Schaefer, Topological Vector Spaces, Springer, 1971.

[00012] [13] M. Scheve, Räume holomorpher Funktionen auf unendlich-dimensionalen Polyzylindern, Dissertation, Düsseldorf 1988.

[00013] [14] D. Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983), 182-200.

[00014] [15] M. J. Wagner, Unterräume und Quotienten von Potenzreihenräumen, Dissertation, Wuppertal 1977.

[00015] [16] V. P. Zakharyuta, Isomorphism and quasiequivalence of bases for Köthe power series spaces, in: Mathematical Programming and Related Problems (Proc. 7th Winter School, Drogobych 1974), Theory of Operators in Linear Spaces, Akad. Nauk SSSR, Tsentr. Ekon.-Mat. Inst., Moscow 1976, 101-126 (in Russian); see also Dokl. Akad. Nauk SSSR 221 (1975), 772-774 (in Russian).