Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group
Damek, Ewa ; Hulanicki, Andrzej
Studia Mathematica, Tome 100 (1991), p. 33-68 / Harvested from The Polish Digital Mathematics Library

On the domain S_a = {(x,e^b): x ∈ N, b ∈ ℝ, b > a} where N is a simply connected nilpotent Lie group, a certain N-left-invariant, second order, degenerate elliptic operator L is considered. N × {e^a} is the Poisson boundary for L-harmonic functions F, i.e. F is the Poisson integral F(xe^b) = ʃ_N f(xy)dμ^b_a(x), for an f in L^∞(N). The main theorem of the paper asserts that the maximal function M^a f(x) = sup{|ʃf(xy)dμ_a^b(y)| : b > a} is of weak type (1,1).

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:215892
@article{bwmeta1.element.bwnjournal-article-smv101i1p33bwm,
     author = {Ewa Damek and Andrzej Hulanicki},
     title = {Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group},
     journal = {Studia Mathematica},
     volume = {100},
     year = {1991},
     pages = {33-68},
     zbl = {0811.43001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv101i1p33bwm}
}
Damek, Ewa; Hulanicki, Andrzej. Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group. Studia Mathematica, Tome 100 (1991) pp. 33-68. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv101i1p33bwm/

[00000] [B] J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1) (1969), 277-304. | Zbl 0176.09703

[00001] [D] E. Damek, Left-invariant degenerate elliptic operators on semidirect extensions of homogeneous groups, Studia Math. 89 (1988), 169-196. | Zbl 0675.22005

[00002] [DH] E. Damek and A. Hulanicki, Boundaries for left-invariant subelliptic operators on semidirect products of nilpotent and abelian groups, J. Reine Angew. Math. 411 (1990), 1-38. | Zbl 0699.22012

[00003] [FS] G. B. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. | Zbl 0508.42025

[00004] [GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1983. | Zbl 0562.35001

[00005] [He] W. Hebisch, Almost everywhere summability of eigenfunction expansions associated to elliptic operators, Studia Math. 96 (1990), 263-275. | Zbl 0716.35053

[00006] [HS] W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, ibid., 231-236. | Zbl 0723.22007

[00007] [H1] A. Hulanicki, Subalgebra of L₁(G) associated with Laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287.

[00008] [H2] A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 828, Springer, 1980, 82-101.

[00009] [HJ] A. Hulanicki and J. Jenkins, Nilpotent groups and summability of eigenfunction expansions of Schrödinger operators, Studia Math. 80 (1984), 235-244. | Zbl 0564.43007

[00010] [K] C. Kenig, oral communication.

[00011] [St] E. M. Stein, Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals, Invent. Math. 74 (1983), 63-83.

[00012] [S] D. Stroock, Lectures on Stochastic Analysis: Diffusion Theory, Cambridge Univ. Press, 1987. | Zbl 0605.60057

[00013] [SV] D. Stroock and S. R. Varadhan, Multidimensional Diffusion Processes, Springer, 1979. | Zbl 0426.60069

[00014] [T] J. C. Taylor, Skew products, regular conditional probabilities and stochastic differential equations: a remark, preprint. | Zbl 0763.60031

[00015] [Z] J. Zienkiewicz, in preparation.