Sur un principe géométrique en analyse convexe
Granas, Andrzej ; Lassonde, Marc
Studia Mathematica, Tome 100 (1991), p. 1-18 / Harvested from The Polish Digital Mathematics Library

In this note we present we present a new elementary approach in the theory of minimax inequalities. The proof of the main result (called the geometric principle) uses only some simple properties of convex functions. The geometric principle (which is equivalent to the well-known lemma of Klee [13]) is shown to have numerous applications in different areas of mathematics.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:215891
@article{bwmeta1.element.bwnjournal-article-smv101i1p1bwm,
     author = {Andrzej Granas and Marc Lassonde},
     title = {Sur un principe g\'eom\'etrique en analyse convexe},
     journal = {Studia Mathematica},
     volume = {100},
     year = {1991},
     pages = {1-18},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv101i1p1bwm}
}
Granas, Andrzej; Lassonde, Marc. Sur un principe géométrique en analyse convexe. Studia Mathematica, Tome 100 (1991) pp. 1-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv101i1p1bwm/

[00000] [1] H. Asakawa, Maximal monotone operators associated with saddle functions, TRU Math. 22 (2) (1986), 47-71. | Zbl 0687.90096

[00001] [2] C. Berge, Espaces topologiques, Fonctions multivoques, Dunod, Paris 1959. | Zbl 0088.14703

[00002] [3] H. F. Bohnenblust, S. Karlin and L. Shapley, Games with continuous pay-off, in: Ann. of Math. Stud. 24 (1950), 181-192 | Zbl 0168.41208

[00003] [4] H. Debrunner und P. Flor, Ein Erweiterungssatz für monotone Mengen, Arch. Math. (Basel) 15 (1964), 445-447. | Zbl 0129.09203

[00004] [5] J. Dugundji and A. Granas, Fixed Point Theory, Vol. I, Monografie Mat. 61, Polish Scientific Publishers, Warszawa 1982.

[00005] [6] K. Fan, Minimax theorems, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 42-47.

[00006] [7] K. Fan, Existence theorems and extreme solutions for inequalities concerning convex functions or linear transformations, Math. Z. 68 (1957), 205-216. | Zbl 0078.10204

[00007] [8] K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310. | Zbl 0093.36701

[00008] [9] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234-240. | Zbl 0185.39503

[00009] [10] K. Fan, A minimax inequality and applications, in: Inequalities III, O. Shisha (ed.), Academic Press, New York 1972, 103-113.

[00010] [11] K. Fan, I. Glicksberg and A. J. Hoffman, Systems of inequalities involving convex functions, Proc. Amer. Math. Soc. 8 (1957), 617-622. | Zbl 0079.02002

[00011] [12] B. Halpern and G. Bergman, A fixed point theorem for inward and outward maps, Trans. Amer. Math. Soc. 130 (1968), 353-358. | Zbl 0153.45602

[00012] [13] V. L. Klee, On certain intersection properties of convex sets, Canad. J. Math. 3 (1951), 272-275. | Zbl 0042.40701

[00013] [14] B. Knaster, C. Kuratowski und S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Math. 14 (1929), 132-137. | Zbl 55.0972.01

[00014] [15] H. Kneser, Sur un théorème fondamental de la théorie des jeux, C. R. Acad. Sci. Paris 234 (1952), 2418-2420. | Zbl 0046.12201

[00015] [16] H. König, Über das von Neumannsche minimax theorem, Arch. Math. (Basel) 19 (1968), 482-487. | Zbl 0179.21001

[00016] [17] M. Lassonde, Multi-applications KKM en analyse non linéaire, Thèse de Doctorat, Université de Montréal, 1978.

[00017] [18] M. Neumann, Bemerkungen zum von Neumannschen Minimaxtheorem, Arch. Math. (Basel) 29 (1977), 96-105.

[00018] [19] H. Nikaidô, On von Neumann's minimax theorem, Pacific J. Math. 4 (1954), 65-72. | Zbl 0055.10004

[00019] [20] M. Sion, On general minimax theorems, ibid. 8 (1958), 171-176. | Zbl 0081.11502

[00020] [21] E. Sperner, Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes, Abh. Math. Sem. Univ. Hamburg 6 (1928), 265-272. | Zbl 54.0614.01

[00021] [22] F. A. Valentine, Convex Sets, McGraw-Hill, New York 1964.