Ergodic group extensions of a dynamical system with discrete spectrum are considered. The elements of the centralizer of such a system are described. The main result says that each invariant sub-σ-algebra is determined by a compact subgroup in the centralizer of a normal natural factor.
@article{bwmeta1.element.bwnjournal-article-smv101i1p19bwm, author = {Mieczys\l aw Mentzen}, title = {Ergodic properties of group extensions of dynamical systems with discrete spectra}, journal = {Studia Mathematica}, volume = {100}, year = {1991}, pages = {19-31}, zbl = {0809.28015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv101i1p19bwm} }
Mentzen, Mieczysław. Ergodic properties of group extensions of dynamical systems with discrete spectra. Studia Mathematica, Tome 100 (1991) pp. 19-31. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv101i1p19bwm/
[00000] [1] A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynamical Systems 7 (1987), 531-557. | Zbl 0646.60010
[00001] [2] H. B. Keynes and D. Newton, Ergodic measures for non-abelian compact group extensions, Compositio Math. 32 (1976), 53-70. | Zbl 0318.28006
[00002] [3] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. 13 (1965), 397-403. | Zbl 0152.21403
[00003] [4] M. Lemańczyk and M. K. Mentzen, Compact subgroups in the centralizer of natural factors determine all factors, Ergodic Theory Dynamical Systems 10 (1990), 763-776. | Zbl 0725.54030
[00004] [5] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. (2) 19 (1979), 129-136. | Zbl 0425.28012
[00005] [6] D. Rudolph, An example of a measure preserving map with minimal self-joinings, and applications, J. Analyse Math. 35 (1979), 97-122. | Zbl 0446.28018