We give an A_p type characterization for the pairs of weights (w,v) for which the maximal operator Mf(y) = sup 1/(b-a) ʃ_a^b |f(x)|dx, where the supremum is taken over all intervals [a,b] such that 0 ≤ a ≤ y ≤ b/ψ(b-a), is of weak type (p,p) with weights (w,v). Here ψ is a nonincreasing function such that ψ(0) = 1 and ψ(∞) = 0.
@article{bwmeta1.element.bwnjournal-article-smv101i1p105bwm, author = {Hugo Aimar and Liliana Forzani}, title = {Weighted weak type inequalities for certain maximal functions}, journal = {Studia Mathematica}, volume = {100}, year = {1991}, pages = {105-111}, zbl = {0808.42013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv101i1p105bwm} }
Aimar, Hugo; Forzani, Liliana. Weighted weak type inequalities for certain maximal functions. Studia Mathematica, Tome 100 (1991) pp. 105-111. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv101i1p105bwm/
[00000] [C] C. P. Calderón, Some remarks on the multiple Weierstrass transform and Abel summability of multiple Fourier-Hermite Series, Studia Math. 32 (1969), 119-148. | Zbl 0182.15901
[00001] [M1] B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231-242. | Zbl 0175.12602
[00002] [M2] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, ibid. 165 (1972), 207-226. | Zbl 0236.26016