We give a construction of an analytic series of uniformly bounded representations of a free group G, through the action of G on its Poisson boundary. These representations are irreducible and give as their coefficients all the spherical functions on G which tend to zero at infinity. The principal and the complementary series of unitary representations are included. We also prove that this construction and the other known constructions lead to equivalent representations.
@article{bwmeta1.element.bwnjournal-article-smv100i3p237bwm, author = {Tadeusz Pytlik}, title = {Spherical functions and uniformly bounded representations of free groups}, journal = {Studia Mathematica}, volume = {100}, year = {1991}, pages = {237-250}, zbl = {0754.22002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i3p237bwm} }
Pytlik, Tadeusz. Spherical functions and uniformly bounded representations of free groups. Studia Mathematica, Tome 100 (1991) pp. 237-250. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i3p237bwm/
[00000] [1] P. Cartier, Géométrie et analyse sur les arbres, Séminaire Bourbaki 24 (1971/72), Exposé 407. | Zbl 0267.14010
[00001] [2] P. Cartier, Harmonic analysis on trees, in: Proc. Sympos. Pure Math. 26 (1972), 419-424.
[00002] [3] A. Figà-Talamanca and A. M. Picardello, Spherical functions and harmonic analysis on free groups, J. Funct. Anal. 47 (1982), 281-304. | Zbl 0489.43008
[00003] [4] A. Figà-Talamanca and A. M. Picardello, Harmonic Analysis on Free Groups, M. Dekker, New York 1983. | Zbl 0536.43001
[00004] [5] A. M. Mantero, T. Pytlik, R. Szwarc and A. Zappa, Equivalence of two series of spherical representations of a free group, Ann. Mat. Pura Appl., to appear. | Zbl 0801.22010
[00005] [6] A. M. Mantero and A. Zappa, The Poisson transform and representations of a free group, J. Funct. Anal. 51 (1983), 372-399. | Zbl 0532.43006
[00006] [7] A. M. Mantero and A. Zappa, Irreducibility of the analytic continuation of the principal series of a free group, J. Austral. Math. Soc. 43 (1987), 199-210.
[00007] [8] M. Pimsner, Cocycles on trees, J. Operator Theory 17 (1987), 121-128. | Zbl 0645.46056
[00008] [9] T. Pytlik, Radial functions on free groups and a decomposition of the regular representation into irreducible components, J. Reine Angew. Math. 326 (1981), 124-135. | Zbl 0464.22004
[00009] [10] T. Pytlik, Spherical functions and uniformly bounded representations of free groups, preprint 60 (1986), Math. Inst. Univ. Wrocław. | Zbl 0754.22002
[00010] [11] T. Pytlik and R. Szwarc, An analytic family of uniformly bounded representations of free groups, Acta Math. 157 (1986), 287-309. | Zbl 0681.43011
[00011] [12] S. Sawyer, Isotropic random walks in a tree, Z. Wahrsch. Verw. Gebiete 12 (1978), 279-292. | Zbl 0362.60075
[00012] [13] R. Szwarc, An analytic series of irreducible representations of the free group, Ann. Inst. Fourier (Grenoble) 38 (1) (1988), 87-110. | Zbl 0634.22003
[00013] [14] A. Valette, Cocycles d'arbres et représentations uniformément bornées, C. R. Acad. Sci. Paris 310 (1990), 703-708. | Zbl 0828.22007