We prove the Hölder continuity for proper holomorphic mappings onto certain piecewise smooth pseudoconvex domains with "good" plurisubharmonic peak functions at each point of their boundaries. We directly obtain a quite precise estimate for the exponent from an attraction property for analytic disks. Moreover, this way does not require any consideration of infinitesimal metric.
@article{bwmeta1.element.bwnjournal-article-smv100i3p229bwm, author = {Fran\c cois Berteloot}, title = {H\"older continuity of proper holomorphic mappings}, journal = {Studia Mathematica}, volume = {100}, year = {1991}, pages = {229-235}, zbl = {0746.32009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i3p229bwm} }
Berteloot, François. Hölder continuity of proper holomorphic mappings. Studia Mathematica, Tome 100 (1991) pp. 229-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i3p229bwm/
[00000] [1] H. Alexander, Proper holomorphic mappings in , Indiana Univ. Math. J. 26 (1977), 137-146. | Zbl 0391.32015
[00001] [2] E. Bedford and J. E. Fornæ ss, Biholomorphic maps of weakly pseudoconvex domains, Duke Math. J. 45 (1978), 711-749.
[00002] [3] K. Diederich and J. E. Fornæ ss, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), 129-141. | Zbl 0353.32025
[00003] [4] K. Diederich and J. E. Fornæ ss, Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary, Ann. of Math. (2) 110 (1979), 575-592. | Zbl 0394.32012
[00004] [5] F. Forstneric and J.-P. Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), 239-252. | Zbl 0644.32013
[00005] [6] J. E. Fornæ ss and N. Sibony, Construction of p.s.h. functions on weakly pseudoconvex domains, Duke Math. J. 58 (1989), 633-655.
[00006] [7] J. E. Fornæ ss and B. Stensønes, Lectures on Counterexamples in Several Complex Variables, Math. Notes 33, Princeton Univ. Press, 1987.
[00007] [8] G. M. Henkin, An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, Soviet. Math. Dokl. 14 (1973), 858-862. | Zbl 0288.32015
[00008] [9] M. Hervé, Les fonctions analytiques, Presses Univ. de France, 1982.
[00009] [10] G. A. Margulis, Boundary correspondence under biholomorphic mappings of multivariate domains, in: Abstracts of the All-Union Conf. on the Theory of Functions of Several Complex Variables, Kharkov 1971, 137-138.
[00010] [11] S. I. Pinchuk, Holomorphic maps in and the problem of holomorphic equivalence, in: Several Complex Variables, Encyclopaedia Math. Sci. 19, Springer, 1989, 173-201.
[00011] [12] R. M. Range, On the topological extension to the boundary of biholomorphic maps in , Trans. Amer. Math. Soc. 216 (1976), 203-216. | Zbl 0313.32034
[00012] [13] N. Vormoor, Topologische Fortsetzung biholomorpher Funktionen auf dem Rande bei beschränkten streng-pseudokonvexen Gebieten im mit -Rand, Math. Ann. 204 (1973), 239-261. | Zbl 0259.32006