Hölder continuity of proper holomorphic mappings
Berteloot, François
Studia Mathematica, Tome 100 (1991), p. 229-235 / Harvested from The Polish Digital Mathematics Library

We prove the Hölder continuity for proper holomorphic mappings onto certain piecewise smooth pseudoconvex domains with "good" plurisubharmonic peak functions at each point of their boundaries. We directly obtain a quite precise estimate for the exponent from an attraction property for analytic disks. Moreover, this way does not require any consideration of infinitesimal metric.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:215885
@article{bwmeta1.element.bwnjournal-article-smv100i3p229bwm,
     author = {Fran\c cois Berteloot},
     title = {H\"older continuity of proper holomorphic mappings},
     journal = {Studia Mathematica},
     volume = {100},
     year = {1991},
     pages = {229-235},
     zbl = {0746.32009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i3p229bwm}
}
Berteloot, François. Hölder continuity of proper holomorphic mappings. Studia Mathematica, Tome 100 (1991) pp. 229-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i3p229bwm/

[00000] [1] H. Alexander, Proper holomorphic mappings in Cn, Indiana Univ. Math. J. 26 (1977), 137-146. | Zbl 0391.32015

[00001] [2] E. Bedford and J. E. Fornæ ss, Biholomorphic maps of weakly pseudoconvex domains, Duke Math. J. 45 (1978), 711-749.

[00002] [3] K. Diederich and J. E. Fornæ ss, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), 129-141. | Zbl 0353.32025

[00003] [4] K. Diederich and J. E. Fornæ ss, Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary, Ann. of Math. (2) 110 (1979), 575-592. | Zbl 0394.32012

[00004] [5] F. Forstneric and J.-P. Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), 239-252. | Zbl 0644.32013

[00005] [6] J. E. Fornæ ss and N. Sibony, Construction of p.s.h. functions on weakly pseudoconvex domains, Duke Math. J. 58 (1989), 633-655.

[00006] [7] J. E. Fornæ ss and B. Stensønes, Lectures on Counterexamples in Several Complex Variables, Math. Notes 33, Princeton Univ. Press, 1987.

[00007] [8] G. M. Henkin, An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, Soviet. Math. Dokl. 14 (1973), 858-862. | Zbl 0288.32015

[00008] [9] M. Hervé, Les fonctions analytiques, Presses Univ. de France, 1982.

[00009] [10] G. A. Margulis, Boundary correspondence under biholomorphic mappings of multivariate domains, in: Abstracts of the All-Union Conf. on the Theory of Functions of Several Complex Variables, Kharkov 1971, 137-138.

[00010] [11] S. I. Pinchuk, Holomorphic maps in Cn and the problem of holomorphic equivalence, in: Several Complex Variables, Encyclopaedia Math. Sci. 19, Springer, 1989, 173-201.

[00011] [12] R. M. Range, On the topological extension to the boundary of biholomorphic maps in Cn, Trans. Amer. Math. Soc. 216 (1976), 203-216. | Zbl 0313.32034

[00012] [13] N. Vormoor, Topologische Fortsetzung biholomorpher Funktionen auf dem Rande bei beschränkten streng-pseudokonvexen Gebieten im Cn mit C-Rand, Math. Ann. 204 (1973), 239-261. | Zbl 0259.32006