If A is a normed power-associative complex algebra such that the selfadjoint part is normally ordered with respect to some order, then the Korovkin closure (see the introduction for definitions) of T ∪ {t* ∘ t| t ∈ T} contains J*(T) for any subset T of A. This can be applied to C*-algebras, minimal norm ideals on a Hilbert space, and to H*-algebras. For bounded H*-algebras and dual C*-algebras there is even equality. This answers a question posed in [1].
@article{bwmeta1.element.bwnjournal-article-smv100i3p219bwm, author = {Ferdinand Beckhoff}, title = {Korovkin theory in normed algebras}, journal = {Studia Mathematica}, volume = {100}, year = {1991}, pages = {219-228}, zbl = {0831.46059}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i3p219bwm} }
Beckhoff, Ferdinand. Korovkin theory in normed algebras. Studia Mathematica, Tome 100 (1991) pp. 219-228. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i3p219bwm/
[00000] [1] F. Altomare, Korovkin closures in Banach algebras, in: Advances in Invariant Subspaces and Other Results of Operator Theory, Proc. 9th Internat. Conf. on Operator Theory, Timișoara and Herculane 1984, Oper. Theory: Adv. Appl. 17, Birkhäuser, Basel 1986, 35-42.
[00001] [2] W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386. | Zbl 0060.26906
[00002] [3] F. Beckhoff, Korovkin-Theory in Algebren, Schriftenreihe Math. Inst. Univ. Münster, Ser. 2, Heft 45, 1987. | Zbl 0626.46049
[00003] [4] F. Beckhoff, A counterexample in Korovkin theory, Rend. Circ. Mat. Palermo (2) 37 (1988), 469-473. | Zbl 0674.46031
[00004] [5] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Springer, Berlin 1979. | Zbl 0421.46048
[00005] [6] J. Dixmier, Von Neumann Algebras, North-Holland Math. Library 27, 1981.
[00006] [7] N. Dunford and J. T. Schwartz, Linear Operators II, Interscience Publ., 1963. | Zbl 0128.34803
[00007] [8] R. V. Kadison, A generalized Schwarz inequality and algebraic invariants of operator algebras, Ann. of Math. 56 (1952), 494-503. | Zbl 0047.35703
[00008] [9] I. Kaplansky, Groups with representations of bounded degree, Canad. J. Math. 1 (1949), 105-112. | Zbl 0037.01603
[00009] [10] B. V. Limaye and M. N. N. Namboodiri, Korovkin approximation on C*-algebras, J. Approx. Theory 34 (1982), 237-246. | Zbl 0501.46049
[00010] [11] B. V. Limaye and M. N. N. Namboodiri, Weak Korovkin approximation by completely positive linear maps on β(H), ibid. 42 (1984), 201-211. | Zbl 0552.41028
[00011] [12] B. V. Limaye and M. N. N. Namboodiri, Weak approximation by positive maps on C*-algebras, to appear. | Zbl 0593.41020
[00012] [13] L. H. Loomis, An Introduction to Abstract Harmonic Analysis, D. van Nostrand, New York 1953.
[00013] [14] M. Pannenberg, Korovkin approximation in Waelbroeck algebras, Math. Ann. 274 (1986), 423-437. | Zbl 0576.41014
[00014] [15] W. M. Priestley, A noncommutative Korovkin theorem, J. Approx. Theory 16 (1976), 251-260.
[00015] [16] A. G. Robertson, A Korovkin theorem for Schwarz maps on C*-algebras, Math. Z. 56 (1977), 205-207. | Zbl 0344.46116
[00016] [17] R. Schatten, Norm Ideals of Completely Continuous Operators, Springer, Berlin 1960.
[00017] [18] M. Takesaki, Theory of Operator Algebras I, Springer, New York 1979.
[00018] [19] B. Yood, Hilbert algebras as topological algebras, Ark. Mat. 12 (1974), 131-151. | Zbl 0286.46054