Necessary and sufficient conditions are shown in order that the inequalities of the form , or hold with some positive C independent of λ > 0 and a μ-measurable function f, where (X,μ) is a space with a complete doubling measure μ, is the maximal operator with respect to μ, Φ, Ψ are arbitrary Young functions, and ϱ, σ are weights, not necessarily doubling.
@article{bwmeta1.element.bwnjournal-article-smv100i3p207bwm, author = {Lubo\v s Pick}, title = {Two-weight weak type maximal inequalities in Orlicz classes}, journal = {Studia Mathematica}, volume = {100}, year = {1991}, pages = {207-218}, zbl = {0752.42012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i3p207bwm} }
Pick, Luboš. Two-weight weak type maximal inequalities in Orlicz classes. Studia Mathematica, Tome 100 (1991) pp. 207-218. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i3p207bwm/
[00000] [1] A. Carbery, S.-Y. A. Chang and J. Garnett, Weights and LlogL, Pacific J. Math. 120 (1) (1985), 33-45.
[00001] [2] D. Gallardo, Weighted weak type integral inequalities for the Hardy-Littlewood maximal operator, Israel J. Math. 67 (1) (1989), 95-108. | Zbl 0683.42021
[00002] [3] A. Gogatishvili, V. Kokilashvili and M. Krbec, Maximal functions in ϕ(L) classes, Dokl. Akad. Nauk SSSR 314 (1) (1990), 534-536 (in Russian). | Zbl 0755.42011
[00003] [4] R. A. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math. 71 (1982), 277-284. | Zbl 0517.42030
[00004] [5] M. A. Krasnosel'skiĭ and Ya. B. Rutitskiĭ, Convex Functions and Orlicz Spaces, Gos. Izdat. Fiz.-Mat. Liter., Moscow 1958 (in Russian).
[00005] [6] M. Krbec, Two weights weak type inequalities for the maximal function in the Zygmund class, in: Function Spaces and Applications, Proc. Conf. Lund 1986, M.Cwikel et al. (eds.), Lecture Notes in Math. 1302, Springer, Berlin 1988, 317-320.
[00006] [7] W. A. J. Luxemburg, Banach Function Spaces, thesis, Delft 1955. | Zbl 0068.09204
[00007] [8] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. | Zbl 0236.26016
[00008] [9] L. Pick, Two weights weak type inequality for the maximal function in , in: Constructive Theory of Functions, Proc. Conf. Varna 1987, B. Sendov et al. (eds.), Publ. House Bulgar. Acad. Sci., Sofia 1988, 377-381.
[00009] [10] L. Pick, Weighted inequalities for the Hardy-Littlewood maximal operators in Orlicz spaces, preprint, Math. Inst. Czech. Acad. Sci. 46 (1989), 1-22.
[00010] [11] J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, Berlin 1989.