Let be a symmetric semigroup of stable measures on a homogeneous group, with smooth Lévy measure. Applying Malliavin calculus for jump processes we prove that the measures have smooth densities.
@article{bwmeta1.element.bwnjournal-article-smv100i3p183bwm, author = {Piotr Graczyk}, title = {Malliavin calculus for stable processes on homogeneous groups}, journal = {Studia Mathematica}, volume = {100}, year = {1991}, pages = {183-205}, zbl = {0745.60055}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i3p183bwm} }
Graczyk, Piotr. Malliavin calculus for stable processes on homogeneous groups. Studia Mathematica, Tome 100 (1991) pp. 183-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i3p183bwm/
[00000] [1] J.-M. Bismut, Calcul des variations stochastique et processus de sauts, Z. Wahrsch. Verw. Gebiete 63 (1983), 147-235. | Zbl 0494.60082
[00001] [2] J.-M. Bismut, Jump processes and boundary processes, in: Stochastic Analysis, Proc. Taniguchi Internat. Sympos., Katata and Kyoto, 1982, K. Itô (ed.), North-Holland Math. Library 32, Kinokuniya and North-Holland, 1984, 53-104.
[00002] [3] S. Ethier and T. Kurtz, Markov processes, Characterization and Convergence, Wiley, New York 1986. | Zbl 0592.60049
[00003] [4] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. | Zbl 0508.42025
[00004] [5] I. I. Gikhman and A. W. Skorokhod, Introduction to the Theory of Stochastic Processes, Nauka, Moscow 1965 (in Russian).
[00005] [6] P. Głowacki, A calculus of symbols and convolution semigroups on the Heisenberg group, Studia Math. 77 (1982), 291-321. | Zbl 0504.43012
[00006] [7] P. Głowacki, Stable semigroups of measures on the Heisenberg group, ibid. 79 (1984), 105-138. | Zbl 0563.43002
[00007] [8] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non-graded homogeneous groups, Invent. Math. 83 (1986), 557-582. | Zbl 0595.43006
[00008] [9] A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 828, Springer, 1980, 82-101. | Zbl 0462.28009
[00009] [10] G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), 264-293. | Zbl 0073.12402
[00010] [11] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam 1981. | Zbl 0495.60005
[00011] [12] A. Janssen, Charakterisierung stetiger Faltungshalbgruppen durch das Lévy-Mass, Math. Ann. 246 (1980), 233-240. | Zbl 0407.60005
[00012] [13] P. Malliavin, Stochastic calculus of variation and hypoelliptic operators, in: Proc. Internat. Sympos. on Stochastic Differential Equations, Kyoto 1976, K. Itô (ed.), Kinokuniya and Wiley, 1978, 195-263.
[00013] [14] P. Pazy, Semi-groups of Linear Operators and Application to Partial Differential Equations, Springer, New York 1983. | Zbl 0516.47023
[00014] [15] D. Stroock, The Malliavin calculus and its application to second order parabolic differential equations: Part I, Math. Systems Theory 14 (1981), 25-65. | Zbl 0474.60061
[00015] [16] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, New York 1983. | Zbl 0516.58001