A new convexity property that implies a fixed point property for L1
Lennard, Chris
Studia Mathematica, Tome 100 (1991), p. 95-108 / Harvested from The Polish Digital Mathematics Library

In this paper we prove a new convexity property for L₁ that resembles uniform convexity. We then develop a general theory that leads from the convexity property through normal structure to a fixed point property, via a theorem of Kirk. Applying this theory to L₁, we get the following type of normal structure: any convex subset of L₁ of positive diameter that is compact for the topology of convergence locally in measure, must have a radius that is smaller than its diameter. Indeed, a stronger result holds. The Chebyshev centre of any norm bounded, convergence locally in measure compact subset of L₁ must be norm compact. Immediately from normal structure, we get a new proof of a fixed point theorem for L₁ due to Lami Dozo and Turpin.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:215881
@article{bwmeta1.element.bwnjournal-article-smv100i2p95bwm,
     author = {Chris Lennard},
     title = {A new convexity property that implies a fixed point property for $L\_{1}$
            },
     journal = {Studia Mathematica},
     volume = {100},
     year = {1991},
     pages = {95-108},
     zbl = {0762.46007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i2p95bwm}
}
Lennard, Chris. A new convexity property that implies a fixed point property for $L_{1}$
            . Studia Mathematica, Tome 100 (1991) pp. 95-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i2p95bwm/

[00000] [Be] M. Besbes, Points fixes des contractions définies sur un convexe L0-fermé de L¹, C. R. Acad. Sci. Paris Sér. I 311 (1990), 243-246.

[00001] [B-M] M. S. Brodskiĭ and D. P. Mil'man, On the center of a convex set, Dokl. Akad. Nauk SSSR (N.S.) 59 (1948), 837-840 (in Russian).

[00002] [Br] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041-1044. | Zbl 0128.35801

[00003] [C-D-L-T] N. L. Carothers, S. J. Dilworth, C. J. Lennard and D. A. Trautman, A fixed point property for the Lorentz space Lp,1(μ), Indiana Univ. Math. J. 40 (1991). 345-352. | Zbl 0736.47029

[00004] [D-S] D. van Dulst and B. Sims, Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK), in: Banach Space Theory and its Applications, Proc. Bucharest 1981, Lecture Notes in Math. 991, Springer, 1983, 35-43.

[00005] [D-V] D. van Dulst and V. de Valk, (KK)-properties, normal structure and fixed points of nonexpansive mappings in Orlicz spaces, Canad. J. Math. 38 (1986), 728-750. | Zbl 0615.46016

[00006] [H] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749. | Zbl 0505.46011

[00007] [I-P] V. I. Istrăţescu and J. R. Partington, On nearly uniformly convex and k-uniformly convex spaces, Math. Proc. Cambridge Philos. Soc. 95 (1984), 325-327. | Zbl 0553.46016

[00008] [Kh] M. A. Khamsi, Note on a fixed point theorem in Banach lattices, preprint, 1990.

[00009] [K-T] M. A. Khamsi and Ph. Turpin, Fixed points of nonexpansive mappings in Banach lattices, Proc. Amer. Math. Soc. 105 (1989), 102-110.

[00010] [Ki₁] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006. | Zbl 0141.32402

[00011] [Ki₂] W. A. Kirk, An abstract fixed point theorem for nonexpansive mappings, Proc. Amer. Math. Soc. 82 (1981), 640-642. | Zbl 0471.54027

[00012] [K-F] A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Dover Publ., 1975.

[00013] [L-T] E. Lami Dozo and Ph. Turpin, Nonexpansive maps in generalized Orlicz spaces, Studia Math. 86 (1987), 155-188. | Zbl 0649.47044

[00014] [L-M] A. T. Lau and P. F. Mah, Normal structure in dual Banach spaces associated with a locally compact group, Trans. Amer. Math. Soc. 310 (1988), 341-353. | Zbl 0706.43003

[00015] [L₁] C. J. Lennard, Operators and geometry of Banach spaces, Ph.D. dissertation, 1988.

[00016] [L₂] C. J. Lennard, C₁ is uniformly Kadec-Klee, Proc. Amer. Math. Soc. 109 (1990), 71-77.

[00017] [Pa] J. R. Partington, On nearly uniformly convex Banach spaces, Math. Proc. Cambridge Philos. Soc. 93 (1983), 127-129. | Zbl 0507.46011

[00018] [Pe] J. P. Penot, Fixed point theorems without convexity, in: Analyse Non Convexe (Pau 1977), Bull. Soc. France Mem. 60 (1979), 129-152.