We give the following bounds on Laguerre polynomials and their derivatives (α ≥ 0): for all natural numbers k, p, n ≥ 0 and t ≥ 0. Also, we give (as the main result of this paper) a technique to estimate the order in k and p in bounds similar to the previous ones, which will be used to see that the estimate on k and p in the previous bounds is sharp and to give an estimate on k and p in other bounds on the Laguerre polynomials proved by Szegö.
@article{bwmeta1.element.bwnjournal-article-smv100i2p169bwm, author = {Antonio Duran}, title = {A bound on the Laguerre polynomials}, journal = {Studia Mathematica}, volume = {100}, year = {1991}, pages = {169-181}, zbl = {0734.33003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i2p169bwm} }
Duran, Antonio. A bound on the Laguerre polynomials. Studia Mathematica, Tome 100 (1991) pp. 169-181. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i2p169bwm/
[00000] [1] A. J. Duran, The analytic functionals in the lower half plane as a Gel'fand-Shilov space, Math. Nachr. (to appear). | Zbl 0796.46026
[00001] [2] A. J. Duran, The Stieltjes moments problem for rapidly decreasing functions, Proc. Amer. Math. Soc. 107 (1989), 731-741. | Zbl 0676.44007
[00002] [3] A. J. Duran, Laguerre expansions of tempered distributions and generalized functions, J. Math. Anal. Appl. 150 (1990), 166-180. | Zbl 0715.46017
[00003] [4] A. Erdélyi (ed.), Tables of Integral Transforms, Vol. 1, McGraw-Hill, New York 1953.
[00004] [5] A. Erdélyi (ed.), Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York 1953. | Zbl 0051.30303
[00005] [6] I. M. Gel'fand et G. E. Shilov, Les distributions, Vol. 2, Dunod, Paris 1964.
[00006] [7] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, New York 1959.