Almost everywhere summability of Laguerre series
Stempak, Krzysztof
Studia Mathematica, Tome 100 (1991), p. 129-147 / Harvested from The Polish Digital Mathematics Library

We apply a construction of generalized twisted convolution to investigate almost everywhere summability of expansions with respect to the orthonormal system of functions na(x)=(n!/Γ(n+a+1))1/2e-x/2Lna(x), n = 0,1,2,..., in L2(+,xadx), a ≥ 0. We prove that the Cesàro means of order δ > a + 2/3 of any function fLp(xadx), 1 ≤ p ≤ ∞, converge to f a.e. The main tool we use is a Hardy-Littlewood type maximal operator associated with a generalized Euclidean convolution.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:215878
@article{bwmeta1.element.bwnjournal-article-smv100i2p129bwm,
     author = {Krzysztof Stempak},
     title = {Almost everywhere summability of Laguerre series},
     journal = {Studia Mathematica},
     volume = {100},
     year = {1991},
     pages = {129-147},
     zbl = {0731.42027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i2p129bwm}
}
Stempak, Krzysztof. Almost everywhere summability of Laguerre series. Studia Mathematica, Tome 100 (1991) pp. 129-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i2p129bwm/

[00000] [1] R. Askey and I. I. Hirschman, Jr., Mean summability for ultraspherical polynomials, Math. Scand. 12 (1963), 167-177. | Zbl 0132.29501

[00001] [2] R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math. 87 (1965), 695-708. | Zbl 0125.31301

[00002] [3] C. P. Calderón, On Abel summability of multiple Laguerre series, Studia Math. 33 (1969), 273-294. | Zbl 0198.10001

[00003] [4] R. Coifman et G. Weiss, Analyse harmonique non commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin 1971. | Zbl 0224.43006

[00004] [5] J. Długosz, Almost everywhere convergence of some summability methods for Laguerre series, Studia Math. 82 (1985), 199-209. | Zbl 0574.42020

[00005] [6] G. Freud and S. Knapowski, On linear processes of approximation (III), ibid. 25 (1965), 373-383. | Zbl 0129.04603

[00006] [7] E. Görlich and C. Markett, Mean Cesàro summability and operator norms for Laguerre expansions, Comment. Math., Tomus specialis II (1979), 139-148. | Zbl 0437.42013

[00007] [8] E. Görlich and C. Markett, A convolution structure for Laguerre series, Indag. Math. 44 (1982), 161-171. | Zbl 0489.42030

[00008] [9] C. Markett, Norm estimates for Cesàro means of Laguerre expansions, in: Approximation and Function Spaces (Proc. Conf. Gdańsk 1979), North-Holland, Amsterdam 1981, 419-435.

[00009] [10] C. Markett, Mean Cesàro summability of Laguerre expansions and norm estimates with shifted parameter, Anal. Math. 8 (1982), 19-37. | Zbl 0515.42023

[00010] [11] C. Markett, Norm estimates for generalized translation operators associated with a singular differential operator, Indag. Math. 46 (1984), 299-313. | Zbl 0566.35074

[00011] [12] B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231-242. | Zbl 0175.12602

[00012] [13] B. Muckenhoupt, Mean convergence of Hermite and Laguerre series. II, ibid. 147 (1970), 433-460.

[00013] [14] J. Peetre, The Weyl transform and Laguerre polynomials, Le Matematiche 27 (1972), 301-323. | Zbl 0276.44005

[00014] [15] E. L. Poiani, Mean Cesàro summability of Laguerre and Hermite series, Trans. Amer. Math. Soc. 173 (1972), 1-31. | Zbl 0224.42014

[00015] [16] H. Pollard, The mean convergence of orthogonal series. II, ibid. 63 (1948), 355-367. | Zbl 0032.40601

[00016] [17] K. Stempak, An algebra associated with the generalized sublaplacian, Studia Math. 88 (1988), 245-256. | Zbl 0672.46025

[00017] [18] K. Stempak, Mean summability methods for Laguerre series, Trans. Amer. Math. Soc. 322 (1990), 671-690. | Zbl 0713.42024

[00018] [19] S. Thangavelu, Multipliers for the Weyl transform and Laguerre expansions, Proc. Indian Acad. Sci. 100 (1990), 9-20. | Zbl 0734.42009

[00019] [20] S. Thangavelu, On almost everywhere and mean convergence of Hermite and Laguerre expansions, Colloq. Math. 60/61 (1990), 21-34. | Zbl 0747.42014

[00020] [21] G. N. Watson, Another note on Laguerre polynomials, J. London Math. Soc. 14 (1939), 19-22. | Zbl 0020.21805