We present a change of variable method and use it to prove the equivalence to bundle shifts for certain analytic Toeplitz operators on the Banach spaces . In Section 2 we see this approach applied in the analysis of essential spectra. Some partial results were obtained in [9] in the Hilbert space case.
@article{bwmeta1.element.bwnjournal-article-smv100i1p81bwm, author = {K. Rudol}, title = {A model for some analytic Toeplitz operators}, journal = {Studia Mathematica}, volume = {100}, year = {1991}, pages = {81-86}, zbl = {0766.47007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i1p81bwm} }
Rudol, K. A model for some analytic Toeplitz operators. Studia Mathematica, Tome 100 (1991) pp. 81-86. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i1p81bwm/
[00000] [1] M. B. Abrahamse and R. G. Douglas, A class of subnormal operators related to multiply connected domains, Adv. in Math. 19 (1976), 106-148. | Zbl 0321.47019
[00001] [2] M. B. Abrahamse and T. Kriete, The spectral multiplicity of a multiplication operator, Indiana Univ. Math. J. 22 (1973), 845-857. | Zbl 0259.47031
[00002] [3] J. B. Conway, Spectral properties of certain operators on Hardy spaces of domains, Integral Equations Operator Theory 10 (1987), 659-706. | Zbl 0658.47028
[00003] [4] C. C. Cowen, On equivalence of Teoplitz operators, J. Operator Theory 7 (1982), 167-172. | Zbl 0489.47012
[00004] [5] H. Helson, Lectures on Invariant Subspaces, Academic Press, 1964.
[00005] [6] R. F. Olin, Functional relationships between a subnormal operator and its minimal normal extension, Pacific J. Math. 63 (1976), 221-229. | Zbl 0323.47018
[00006] [7] K. Rudol, Spectral mapping theorems for analytic functional calculi, in: Operator Theory: Adv. Appl. 17, Birkhäuser, 1986, 331-340.
[00007] [8] K. Rudol, The generalised Wold Decomposition for subnormal operators, Integral Equations Operator Theory 11 (1988), 420-436. | Zbl 0645.47021
[00008] [9] K. Rudol, On the bundle shifts and cluster sets, ibid. 12 (1989), 444-448. | Zbl 0685.47024
[00009] [10] J. Spraker, The minimal normal extensions for on the Hardy space of a planar region, Trans. Amer. Math. Soc. 318 (1990), 57-67. | Zbl 0704.47019
[00010] [11] D. V. Yakubovich, Riemann surface models of Toeplitz operators, in: Operator Theory: Adv. Appl. 42, Birkhäuser, 1989, 305-415.