Weighted-BMO and the Hilbert transform
Jiang, Hui-Ming
Studia Mathematica, Tome 100 (1991), p. 75-80 / Harvested from The Polish Digital Mathematics Library

In 1967, E. M. Stein proved that the Hilbert transform is bounded from L to BMO. In 1976, Muckenhoupt and Wheeden gave an analogue of Stein’s result. They gave a necessary and sufficient condition for the boundedness of the Hilbert transform from Lw. We improve the results of Muckenhoupt and Wheeden’s and give a necessary and sufficient condition for the boundedness of the Hilbert transform from BMOw to BMOw.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:215874
@article{bwmeta1.element.bwnjournal-article-smv100i1p75bwm,
     author = {Hui-Ming Jiang},
     title = {Weighted-BMO and the Hilbert transform},
     journal = {Studia Mathematica},
     volume = {100},
     year = {1991},
     pages = {75-80},
     zbl = {0739.44003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i1p75bwm}
}
Jiang, Hui-Ming. Weighted-BMO and the Hilbert transform. Studia Mathematica, Tome 100 (1991) pp. 75-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i1p75bwm/

[00000] [1] R. A. Hunt, B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251. | Zbl 0262.44004

[00001] [2] B. Muckenhoupt and R. L. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia Math. 54 (1976), 221-237. | Zbl 0318.26014

[00002] [3] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986.