In 1967, E. M. Stein proved that the Hilbert transform is bounded from to BMO. In 1976, Muckenhoupt and Wheeden gave an analogue of Stein’s result. They gave a necessary and sufficient condition for the boundedness of the Hilbert transform from . We improve the results of Muckenhoupt and Wheeden’s and give a necessary and sufficient condition for the boundedness of the Hilbert transform from to .
@article{bwmeta1.element.bwnjournal-article-smv100i1p75bwm, author = {Hui-Ming Jiang}, title = {Weighted-BMO and the Hilbert transform}, journal = {Studia Mathematica}, volume = {100}, year = {1991}, pages = {75-80}, zbl = {0739.44003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i1p75bwm} }
Jiang, Hui-Ming. Weighted-BMO and the Hilbert transform. Studia Mathematica, Tome 100 (1991) pp. 75-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i1p75bwm/
[00000] [1] R. A. Hunt, B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251. | Zbl 0262.44004
[00001] [2] B. Muckenhoupt and R. L. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia Math. 54 (1976), 221-237. | Zbl 0318.26014
[00002] [3] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986.