Spaces of sequences, sampling theorem, and functions of exponential type
Torres, Rodolfo
Studia Mathematica, Tome 100 (1991), p. 51-74 / Harvested from The Polish Digital Mathematics Library

We introduce certain spaces of sequences which can be used to characterize spaces of functions of exponential type. We present a generalized version of the sampling theorem and a "nonorthogonal wavelet decomposition" for the elements of these spaces of sequences. In particular, we obtain a discrete version of the so-called φ-transform studied in [6] [8]. We also show how these new spaces and the corresponding decompositions can be used to study multiplier operators on Besov spaces.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:215873
@article{bwmeta1.element.bwnjournal-article-smv100i1p51bwm,
     author = {Rodolfo Torres},
     title = {Spaces of sequences, sampling theorem, and functions of exponential type},
     journal = {Studia Mathematica},
     volume = {100},
     year = {1991},
     pages = {51-74},
     zbl = {0751.46012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv100i1p51bwm}
}
Torres, Rodolfo. Spaces of sequences, sampling theorem, and functions of exponential type. Studia Mathematica, Tome 100 (1991) pp. 51-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv100i1p51bwm/

[00000] [1] P. Ausscer and M. Carro, On the relations between operators on n, n and n, Studia Math., to appear.

[00001] [2] R. Boas, Entire Functions, Academic Press, New York 1954. | Zbl 0058.30201

[00002] [3] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. | Zbl 0644.42026

[00003] [4] K. de Leeuw, On Lp multipliers, Ann. of Math. 81 (1965), 364-379.

[00004] [5] H. Feichtinger and K. Gröchenig, Banach spaces related to intergrable group representations and their atomic decompositions, I, J. Funct. Anal. 86 (1989), 307-340. | Zbl 0691.46011

[00005] [6] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799. | Zbl 0551.46018

[00006] [7] M. Frazier and B. Jawerth, The φ-transform and applications to distribution spaces, in: Function Spaces and Applications, M. Cwikel et al. (eds.), Lecture Notes in Math. 1302, Springer, 1988, 223-246. | Zbl 0648.46038

[00007] [8] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces. J. Funct. Anal., to appear.

[00008] [9] M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley theory and the study of function spaces, CBMS Regional Conf. Ser. in Math., to appear. | Zbl 0757.42006

[00009] [10] M. Frazier and R. Torres, The sampling theorem, φ-transform and Shannon wavelets for R, Z, T and ZN, preprint.

[00010] [11] C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666. | Zbl 0683.42031

[00011] [12] M. Holschneider, Wavelet analysis on the circle, J. Math. Phys. 31 (1990), 39-44. | Zbl 0729.46005

[00012] [13] Y. Katznelson, An Introduction to Harmonic Analysis, Dover, New York 1976.

[00013] [14] S. Mallat, Multiresolution representations and wavelets, Ph.D. Thesis, Electrical Engineering Department, Univ. of Pennsylvania, 1988.

[00014] [15] Y. Meyer, Wavelets and operators, Proc. of the Special Year in Modern Analysis at the University of Illinois, London Math. Soc. Lecture Note Ser. 137, Cambridge Univ. Press, Cambridge 1989, 256-364.

[00015] [16] Y. Meyer, Ondelettes et opérateurs, Hermann, Paris 1990. | Zbl 0694.41037

[00016] [17] C. Onneweer and S. Weiyi, Homogeneous Besov spaces on locally compact Vilenkin groups, Studia Math. 93 (1989), 17-39. | Zbl 0681.43006

[00017] [18] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Durham, N.C., 1976. | Zbl 0356.46038

[00018] [19] V. Peller, Wiener-Hopf operators on a finite interval and Schatten-von Neumann classes, Proc. Amer. Math. Soc. 104 (1988), 479-486. | Zbl 0692.47027

[00019] [20] B. Petersen, Introduction to the Fourier Transform and Pseudo-differential Operators, Pitman, Boston 1983.

[00020] [21] R. Rochberg, Toeplitz and Hankel operators on the Paley-Wiener spaces, Integral Equations Operator Theory 10, (1987), 187-235. | Zbl 0634.47024

[00021] [22] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. | Zbl 0207.13501

[00022] [23] R. Torres, Boundedness results for operators with singular kernels on distribution spaces, Mem. Amer. Math. Soc. 442 (1991). | Zbl 0737.47041

[00023] [24] H. Triebel, Theory of Function Spaces, Monographs Math. 78, Birkhäuser, Basel 1983.

[00024] [25] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, London 1968. | Zbl 0157.38204